MODE D'EMPLOI
Machine de soudage

Inscrivez vous!
profitez-en!
Jetzt Registrieren
und Profitieren!
www.vector-welding.com
VECTOR DIGITAL - Nous optimisons la qualité et les prix
Le regard sur l'avenir, la durabilité, le respect de l'environnement et la grande compétence orientée vers le client - les mots clés dont nous sommes responsables.
Pour cette raison, nous développons notre propre marque puissante VECTOR.

Dans l'équipement de soudage de vecteur ils combinent la technologie d'inverseur avancée, les normes de qualité les plus élevées d'une marque de première qualité et des prix bas par rapport qualité-prix. La technologie Inverter est un élément essentiel de l'amélioration des processus et de minimisation de la consommation d'énergie. Dans tous nos équipements, nous faisons donc confiance à la technologie MOSFET de Toshiba et à la technologie Infineon IGBT de SIEMENS. Leurs solutions innovantes établissent de nouvelles normes en matière de technologie de soudage.

L'équipement de soudage VECTOR peut être utilisé sur presque tous les métaux soudables. Il est particulièrement adapté lorsque les soudures de qualité sont extrêmement importantes. Jardinage privé - motos, voitures, camions, voitures classiques, modélisme, balustrades d'escaliers et balustrades ou dans les secteurs professionnels et industriels tels que Pipeline pétrolier, chimique, automobile, construction navale, chaudière, construction d'énergie électrique, énergie nucléaire, aérospatiale, militaire, l'installation industrielle, la construction de pont et d'autres industries, les exigences de qualité les plus élevées sont rencontrées avec succès avec l'équipement de soudage VECTOR.

VECTOR est l'un des principaux fournisseurs d'équipements de soudage - découvrez vos possibilités - profitez de notre vision pour proposer des équipements de soudage modernes et performants à des prix imbattables.

Sur la base de 4 objectifs stratégiques, notre entreprise travaille jour après jour pour optimiser ces visions:
◆ Numéro 1 en Technologie
◆ Numéro 1 dans les prix
◆ Numéro 1 en service
◆ Numéro1 de la compatibilité environnemental

Plus de 30 000 clients enthousiastes font confiance à nos équipements dans la technologie du soudage et du plasma. Ils confirment le succès de cette stratégie avant-gardiste. En plus du test de qualité rigoureux et de l'essai dans la production, nous soumettons l'équipement à une inspection complète avant la livraison. Nous garantissons la livraison des pièces de rechange et la réparation de tous les équipements. Le client est servi pendant et après la période de garantie de notre part. En cas de problème, appelez-nous, nous sommes toujours disponibles. Vous êtes également invités à nous rendre visite. Des employés hautement qualifiés se consacrent à l'exécution de leurs différentes tâches avec expertise et passion. Notre équipe motivée trouvera toujours une solution positive pour vous. Tout le monde est invité à tester notre équipement en détail sous la direction de nos experts.

Vous allez gagner dans le jardinage privé, l'industriel ou le professionnel et tout autres domaines si vous comptez sur notre technologie de l'équipement de soudage de VECTOR.

Pour toute question/suggestion, veuillez nous contacter: www vector -welding.com

Lisez et comprenez tout ce manuel et les pratiques de sécurité des employés avant d'installer, d'utiliser ou d'entretenir l'équipement. Alors que les instructions d'utilisation fournissent une introduction à l'utilisation sécuritaire des produits.

- Lisez le mode d'emploi de tous les composants du système!
- Respectez les règles de prévention des accidents!
- Respectez toutes les réglementations locales!
- Confirmez avec la signature le cas échéant.

Publié par:
VECTOR WELDING TECHNOLOGY GMBH
Hansestrasse 101.
51149, Cologne, Allemagne

www.vector -welding.com

Notez les informations suivantes à des fins de garantie:

Lieu d'achat:__

Date d'achat:__

Numéro de série:____________________________________
Sicherheitshinweise

1.1 Dommages du soudage à l’arc------------------------------- 01-05
1.2 Effets des champs électriques et magnétiques à basse fréquence--- 05-05
1.3 Tableau de symboles------------------------------------- 06-06

CHAPTER 1: ÉQUIPEMENT DE LA SÉRIE AC / DC

Série V--- 07-07
1. Résumé
1.1 Introduction courte---------------------------------- 08-09
1.2 Principe de fonctionnement------------------------ 10-10
1.3 Caractéristique Volt- Ampère--------------------- 10-10
1.4 Spécifications V1841/V241------------------------ 11-11
1.5 Spécifications V341------------------------------- 12-12
1.6 Cycle de service----------------------------------- 12-13
1.7 Articles emballés---------------------------------- 13-13

2. Opération
2.1 Disposition pour le panneau V1 8 4 1------------- 14-17
2.2 Panneau de contrôle------------------------------- 17-20
2.3 Disposition pour le panneau V2 4 1 / V3 4 1------- 21-24
2.4 Panneau de contrôle------------------------------- 25-28
2.5 Configuration pour le soudage STICK (MMA)-------- 28-29
2.6 Mise en place pour le soudage LIFT TIG (GTAW)--- 29-30
2.7 Environnement d'exploitation--------------------- 31-31
2.8 Avis d’opération---------------------------------- 31-31

3. Dépannage
3.1 Dépannage--- 32-34

CHAPTER 2: ÉQUIPEMENT DE SÉRIE STICK

Série E--- 35-35
1. Résumé
1.1 Introduction Courte------------------------------ 36-36
1.2 Principe de fonctionnement---------------------- 36-36
1.3 Spécifications C4 1------------------------------- 37-37
1.4 Articles emballés------------------------------- 37-37
1.5 Cycle de service--------------------------------- 38-38

CHAPITRE 3: ÉQUIPEMENT DE SÉRIE DE COUPE

SÉRIES C--- 52-52
1. Zusammenfassung
1.1 Introduction Courte------------------------------- 53-53
1.2 Spécifications C 4 1------------------------------- 53-54
1.3 Articles emballés------------------------------- 54-54
1.4 Cycle de service------------------------------- 54-54
1.5 Spécifications C7 1------------------------------- 55-55
1.6 Articles emballés------------------------------- 55-55
1.7 Cycle de service------------------------------- 56-56
1.8 Spécifications C10 1-------------------------- 56-57
1.9 Articles emballés------------------------------- 57-57
1.10 Cycle de service------------------------------- 57-57

2. Opération
2.1 Disposition pour le panneau C4 1------------ 58-59
2.2 Disposition pour le panneau C7 1------------ 57-58
2.3 Disposition pour le panneau C10 1------------ 61-62
2.4 Capacité de coupe en acier (Épaisseur à l’échelle.)--- 63-63
2.5 Instructions d’installation------------------ 63-65

3. Dépannage
CHAPITRE 4 : Equipement de series d'impulsion CC

SÉRIE T

1. Résumé
1.1 Introduction courte
1.2 Principe de fonctionnement
1.3 Caractéristique Volt-ampère
1.4 Spécifications T231/T331
1.5 Cycle de service
1.6 Articles emballés

2. Opération
2.1 Disposition pour le panneau T231/T331
2.2 Panneau de contrôle
2.3 Configuration pour le soudage STICK (MMA)
2.4 Mise en place pour le soudage LIFT TIG (GTAW)
2.5 Configuration pour le soudage STICK (MMA)
2.6 Avis d'opération

3. Dépannage
3.1 Dépannage

CHAPITRE 5: ÉQUIPEMENT SÉRIE MULTIFONCTION

SÉRIES O

1. Résumé
1.1 Introduction Courte
1.2 Principe de fonctionnement
1.3 Caractéristique Volt- Ampère
1.4 Spécialisations O241 und O251
1.5 Cycle de service
1.6 Articles emballés

2. Opération
2.1 Disposition pour le panneau O241
2.2 Panneau de contrôle
2.3 Disposition pour le panneau O251
2.4 Panneau de contrôle
2.5 Configuration pour le soudage STICK (MMA) O241
2.6 Mise en place pour le soudage LIFT TIG (GTAW) O241
2.7 Configuration pour la coupe (CUT) O241
2.8 Configuration pour le soudage STICK (MMA) O251
2.9 Mise en place pour le soudage LIFT TIG (GTAW) O251
2.10 Configuration pour la coupe (CUT) O251
2.11 Environnement d'exploitation
2.12 Avis d'opération

3. Dépannage
3.1 Dépannage

CHAPITRE 6: ÉQUIPEMENT DE LA SÉRIE MIG

SÉRIES R

1. Résumé
1.1 Introduction courte
1.2 Principe de fonctionnement
1.3 Spécifications R221
1.4 Articles emballés
1.5 Cycle de service
1.6 Spécifications R231
1.7 Articles emballés
1.8 Cycle de service
1.9 Spécifications R251/R311
1.10 Articles emballés
1.11 Cycle de service

2. Opération
2.1 Disposition pour le panneau R221
2.2 Disposition pour le panneau R231
2.3 MIG polarité plomb
2.4 Disposition pour le panneau R311
2.5 Installation d’une bobine de 5 kg de diamètre de 200 mm (pour R221, R231)
2.6 Installation d’une bobine de 15 kg de diamètre 300mm (convient pour R251 et R311)
2.7 Insertion de fil dans le mécanisme d’alimentation
2.8 Réglage de la pression du rouleau d’alimentation
2.9 Changer le rouleau d’alimentation
2.10 Instructions d’utilisation du régulateur de gaz de protection
2.11 Mise en place de soudage MIG (GMAW) avec fil MIG blindé au gaz
CHAPITRE 7: TECHNIQUE DE SOUDAGE ET MAINTENANCE

<table>
<thead>
<tr>
<th>TITRE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Soudage TIG</td>
<td></td>
</tr>
<tr>
<td>1.1 Technique de soudage de base TIG</td>
<td>146-146</td>
</tr>
<tr>
<td>1.2 Formes communes dans TIG</td>
<td>146-146</td>
</tr>
<tr>
<td>1.3 L'explication de la qualité du soudage</td>
<td>146-147</td>
</tr>
<tr>
<td>1.4 Paramètres TIG correspondants</td>
<td>147-149</td>
</tr>
<tr>
<td>1.5 Paramètres TIG de l'équipement de Séries E</td>
<td>149-150</td>
</tr>
<tr>
<td>2. Soudage MMA</td>
<td></td>
</tr>
<tr>
<td>2.1 Technique de base de soudage MMA</td>
<td>151-152</td>
</tr>
<tr>
<td>3. Soudage MIG</td>
<td></td>
</tr>
<tr>
<td>3.1 Technique de soudage de base pour MIG (GMAW / FCAW)</td>
<td>153-155</td>
</tr>
<tr>
<td>4. Entretien</td>
<td></td>
</tr>
<tr>
<td>4.1 Entretien</td>
<td>156-157</td>
</tr>
</tbody>
</table>

AVERTISSEMENTS

PROTÉGEZ-VOUS ET AUTRES DE BLESSURES GRAVES POSSIBLES OU DE LA MORT. GARDEZ LES ENFANTS À L'ÉCART. LES UTILISATEURS DU PACEMAKER SE GARDENT TOUT JUSQU'À CONSULTER VOTRE MÉDECIN. NE PAS PERDRE CES INSTRUCTIONS. LISEZ LE MANUEL D'UTILISATION / D'INSTRUMENT AVANT D'INSTALLER, D'UTILISER OU D'ENTREtenIR CET ÉQUIPEMENT.

Les produits de soudage et les procédés de soudage peuvent causer des blessures graves ou de la mort, ou endommager d'autres équipements ou biens, si l'opérateur ne respecte pas strictement toutes les règles de sécurité et ne prend pas des mesures de précaution.

Des pratiques de sécurité se sont développées à partir de l'expérience passée dans l'utilisation de la soudure et de la coupe. Ces pratiques doivent être apprises par l'étude et la formation avant d'installer cet équipement. Certaines de ces pratiques s'appliquent aux équipements connectés aux lignes électriques; d'autres pratiques s'appliquent à l'équipement entraîné par un moteur. Toute personne n'ayant pas une formation approfondie en soudage et en coupage ne doit pas tenter de souder.

Les pratiques de sécurité sont décrites dans la norme européenne EN60974-1 intitulée: Sécurité dans le soudage et les techniques connexes. Partie 2: Électrique TOUTES LES INSTALLATIONS, FONCTIONNEMENTS, MAINTENANCE ET TRAVAIL D’ANDREPAIR SONT EFFECTUÉS UNIQUEMENT PAR DES PERSONNES QUALIFIÉES.

1.1 Dommages du soudage à l’arc

ALERTE
CHOC ELECTRIQUE peut tuer.

Toucher des pièces électriques sous tension peut provoquer des chocs mortels ou de graves brûlures. L'électrode et le circuit de travail sont alimentés électriquement chaque fois que la sortie est activée. Le circuit d'alimentation d'entrée et les circuits internes de la machine sont également actifs lorsque l'alimentation est activée. Dans le soudage par fil semi-automatique ou automatique, le fil, la bobine de fil, le boulon du rouleau d’entretrainement et toutes les parties métalliques touchant le fil de soudage sont sous tension. Un équipement mal installé ou mal mis à la terre constitue un danger.

1. Ne touchez pas les parties électriques sous tension.
2. Portez des gants isolants secs sans trous et une protection corporelle.
3. Isolez-vous du travail et du sol en utilisant des tapis ou des couvertures isolants secs.
4. Déconnectez l'alimentation d'entrée ou arrêtez le moteur avant d'installer ou d'entretenir cet équipement. Verrouillez le secondeur d'alimentation d'entrée ouvres pour éviter que les fusibles de la ligne afin de ne pas pouvoir allumer accidentellement.
5. Properly installez et mettez à la terre cet équipement selon son manuel du propriétaire.
Instructions de sécurité

ALERTE Les RAYONS D’ARC peuvent brûler les yeux et la peau, le BRUIT peut endommager l’ouïe.

Les rayons d’arc provenant du processus de soudage produisent une chaleur intense et de puissants rayons ultraviolets qui peuvent brûler les yeux et la peau. Le bruit de certains processus peut endommager l’audition.

1. Portez un casque de soudage équipé d’une nuance de filtre appropriée pour protéger votre visage et vos yeux lors du soudage ou de l’observation;
2. Portez des lunettes de sécurité approuvées. Boucliers latéraux recommandés;
3. Utilisez des écrans ou des barrières de protection pour protéger les autres contre le flash et les éblouissements; avertissez les autres de ne pas regarder l’arc;
4. Portez des vêtements de protection en matière durable et ignifuge pour éviter que le courant de soudage ne circule longtemps, que les chemins soient inconnus et les rayons d’arc provenant du processus de soudage produisent une chaleur intense et de puissants rayons ultraviolets qui peuvent brûler les yeux et la peau. Le bruit de certains processus peut endommager l’audition, qu’ils provoquent des risques d’électrocution et d’incendie.
5. Utilisez des bouchons d’oreille ou des protège-oreilles approuvés si le niveau de bruit est élevé.
6. Ne portez jamais de lentilles de contact pendant le soudage.

ALERTE FUMÉES ET GAZ peuvent être dangereux pour votre santé.

Le soudage produit des fumées et des gaz. Respirer ces vapeurs et gaz peut être dangereux pour votre santé.

2. Si à l’intérieur, aérez la zone et / ou utilisez l’échappement à l’arc pour éliminer les fumées de soudage et les gaz.
3. Si la ventilation est mauvaise, utiliser à adduction un respirateur d’air approuvé.
4. Ne travaillez dans un espace confiné que s’il est bien ventilé ou porte un respirateur à adduction d’air. Les gaz de protection utilisés pour le soudage peuvent déplacer l’air causant des blessures ou de la mort. Assurez-vous l’air respirable est sécuritaire.
5. Ne pas souder à proximité d’opérations de dégraissage, de nettoyage ou de pulvérisation. La chaleur et les rayons de l’arc peuvent réagir avec les vapeurs pour former des gaz très toxiques et irritants.
6. Ne pas souder sur des métaux enduits tels que l’acier galvanisé, plomb ou cadmium, à moins que le revêtement ne soit retiré de la zone de soudure, que la zone soit bien ventilée et, si nécessaire, avec un respirateur à adduction d’air. Les revêtements et tous les métaux contenant ces éléments peuvent dégager des vapeurs toxiques s’ils sont soudés.

ALERTE Le SOUDAGE peut provoquer un incendie/une explosion.

Les étincelles et les éclaboussures s’envolent de l’arc de soudage. Les étincelles et le métal chaud, les éclaboussures de soudure, la pièce chaude et l’équipement chaud peuvent causer des incendies et des brûlures. Un contact accidentel de l’électrode ou du fil de soudage avec des objets métalliques peut provoquer des étincelles, une surchauffe ou un incendie.

ALERTE LES ÉTINCELLES VOLANTES et le MÉTAL CHAUD peuvent causer des blessures.

L’écaillage et le meulage provoquent le vol de métal. Lorsque les soudures sont froides, elles peuvent éliminer les scories.

2. Portez une protection corporelle appropriée pour protéger la peau.

ALERTE CYLINDRES peuvent exploser s’ils sont endommagés.

Sblindage des bouteilles de gaz contiennent du gaz sous haute pression. Si endommagé, un cylindre peut exploser. Puisque les bouteilles de gaz font normalement partie du processus de soudage, assurez-vous de les traiter avec soin.

1. Portez les bouteilles de gaz comprimé hors de la chaleur excessive, hors de chocs mécaniques et de arcs.
2. Installez et fixez les vérins dans une position verticale en les enchaînant à un support stationnaire ou à un équipement de porte-bouteilles pour éviter qu’ils ne tombent ou ne basculent jamais.
4. Ne jamais permettre à une électrode de soudage de toucher un cylindre.
5. Utilisez uniquement des blindages des bouteilles de gaz, des régulateurs, des tuyaux et des raccords adaptés à l’application spécifique; maintenez-les et les pièces associées en bon état.
6. Tournez le visage à l’écart de la sortie de la vanne lors de l’ouverture de la vanne de cylindre.
7. Gardez le capuchon de protection en place au-dessus de la vanne, sauf lorsque le cylindre est utilisé ou connecté pour utilisation.
8. Lisez et suivez les instructions sur les bouteilles de gaz comprimé, l’équipement associé.

ALERTE Le CARBURANT DU MOTEUR peut provoquer un incendie ou une explosion.

Le carburant du moteur est hautement inflammable.
1. Arrêtez le moteur avant de vérifier ou d’ajouter du carburant.
2. Ne pas ajouter de carburant en fumant ou si l’unité est près d’étincelles ou de flammes nues.
3. Laissez le moteur refroidir avant de faire le plein. Si possible, vérifiez et ajoutez du carburant au moteur froid avant de commencer le travail.
4. Ne pas trop remplir le réservoir - laisser de la place au carburant se dilate.
5. Ne renversez pas de carburant. Si le carburant est renversé, le nettoyer avant de démarrer le moteur.

ALERTE Les pièces en mouvement peuvent causer des blessures.

Les pièces en mouvement, comme les ventilateurs, les rotors et les courroies, peuvent couper les doigts et les mains et attraper des vêtements amples.
1. Gardez toutes les portes, panneaux, couvercles et protections fermés et solidement en place.
2. Arrêtez le moteur avant d’installer ou de connecter l’unité.
3. N’utilisez que des personnes qualifiées pour retirer les protections ou les couvercles pour la maintenance et le dépannage si nécessaire.
4. Pour éviter tout démarrage accidentel pendant l’entretien, débranchez le câble négatif (-) de la batterie.
5. Gardez les mains, les cheveux, les vêtements amples et les outils éloignés hors de pièces mobiles.
6. Réinstallez les panneaux ou les protections et fermez les portes lorsque l’entretien est terminé et avant de démarrer le moteur.

ALERTE Les ÉTINCELLE ÉLECTRIQUE peuvent provoquer l’explosion des gaz de la batterie; L’ACIDE DE LA BATTERIE peut brûler les yeux et la peau.

Les batteries contiennent de l’acide et génèrent des gaz explosifs.
1. Toujours portez un écran facial lorsque vous travaillez sur une batterie.
2. Arrêtez le moteur avant de déconnecter ou de connecter les câbles de batterie.
3. Ne laissez pas les outils causer des étincelles lorsque vous travaillez sur une batterie.
4. N’utilisez pas de soudeuse pour charger les batteries ou démarrer des véhicules.
5. Observez la polarité correcte (+ et -) sur les batteries.

REMARQUE

1.2 Effets des champs électriques et magnétiques à basse fréquence

Le courant électrique circulant à travers un conducteur provoque des champs électriques et magnétiques localisés (EMF). Le débat sur l’effet de FEM est en cours partout dans le monde. Jusqu’à présent, aucune preuve matérielle ne montre que les champs électromagnétiques peuvent avoir des effets sur la santé. Cependant, la recherche sur les dommages de champs électromagnétiques EMF toujours en cours. Avant toute conclusion, devrions minimiser l’exposition au EMF aussi peu que possible.

A réduire les champs magnétiques du lieu travail, les procédures suivantes.
1. Gardez les câbles rapprochés en les torsadant ou en les attachant avec du ruban adhésif.
2. Rangez les câbles d’un côté et loin de l’opérateur.
3. Ne pas enrouler ou draper le câble autour du corps.
4. Maintenez la source d’alimentation de soudage et les câbles le plus loin possible du corps.
5. Les personnes ayant un stimulateur cardiaque doivent être loin de la zone de soudage.

ALERTE STEAM AND PRESSURIZED HOT COOLANT can burn face, eyes, and skin.

Le liquide de refroidissement dans le radiateur peut être très chaud et sous pression.
1. Ne retirez pas le bouchon du radiateur lorsque le moteur est chaud. Laisser le moteur refroidir.
2. Portez des gants et placez un chiffon sur la zone du capuchon lorsque vous retirez le capuchon.
3. Laissez la pression s’échapper avant de retirer complètement le bouchon.
1.3 Tableau de symboles

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allumé</td>
<td>Monophasé</td>
</tr>
<tr>
<td>Éteint</td>
<td>Trois phases</td>
</tr>
<tr>
<td>Tension dangereuse</td>
<td>Réprisage statique d'un transformateur de convertisseur de fréquence</td>
</tr>
<tr>
<td>Augmenter</td>
<td>A distance</td>
</tr>
<tr>
<td>Diminuer</td>
<td>Cycle de service</td>
</tr>
<tr>
<td>Puissance auxiliaire AC</td>
<td>Pourcentage</td>
</tr>
<tr>
<td>Fusible</td>
<td>Panneau / local</td>
</tr>
<tr>
<td>Intensité de courant</td>
<td>Soudage à l'arc avec électrode enrobée (SMAW)</td>
</tr>
<tr>
<td>Tension</td>
<td>Soudage à l'arc sous gaz-métal (GMAW)</td>
</tr>
<tr>
<td>Hertz (cycles / sec)</td>
<td>Soudage à l'arc au tungstène gazeux (GTAW)</td>
</tr>
<tr>
<td>Fréquence</td>
<td>Coupe à l'arc au carbone à l'arc (CAC-A)</td>
</tr>
<tr>
<td>Ngatif</td>
<td>Courant constant</td>
</tr>
<tr>
<td>Positif</td>
<td>Tension constante ou potentiel constant</td>
</tr>
<tr>
<td>Courant continu (DC)</td>
<td>Température élevée</td>
</tr>
<tr>
<td>Terre protectrice (terre)</td>
<td>Indication de défaut</td>
</tr>
<tr>
<td>Ligne</td>
<td>Force de l'arc</td>
</tr>
<tr>
<td>Connexion en ligne</td>
<td>Touch start (GTAW)</td>
</tr>
<tr>
<td>Puissance auxiliaire</td>
<td>Inductance variable</td>
</tr>
<tr>
<td>Puissance auxiliaire de prise de réceptacle</td>
<td>Entrée de tension</td>
</tr>
<tr>
<td>115V 15A</td>
<td>Fonction d'alimentation de fil</td>
</tr>
<tr>
<td>150</td>
<td>Le fil avance vers la pièce à travail avec la tension de sortie éteinte.</td>
</tr>
<tr>
<td>Pistolet de soudage</td>
<td>Purge de gaz</td>
</tr>
<tr>
<td>Mode de soudure continue</td>
<td>Mode de soudure par points</td>
</tr>
<tr>
<td>Temps de pré-écoulement</td>
<td>Temps post-flux</td>
</tr>
<tr>
<td>Opération de déclenchement de 4 étapes</td>
<td>Appuyer et maintenir pour pré-flux, relâcher pour démarrer l'arc, appuyer pour arrêter l'arc, et maintenir pour pré-flux.</td>
</tr>
<tr>
<td>Temps de burnback</td>
<td>Pouces par minute</td>
</tr>
<tr>
<td>Temps post-flux</td>
<td>Mètres par minute</td>
</tr>
<tr>
<td>Indication de défaut</td>
<td>Voir la note</td>
</tr>
<tr>
<td>Force de l'arc</td>
<td>Voir la note</td>
</tr>
<tr>
<td>Soudage par impulsions</td>
<td>Voir la note</td>
</tr>
</tbody>
</table>
1.1 Introduction courte

La machine de soudage TIG V1841 V241 V341 AC / DC adopte la dernière technologie de modulation de largeur d’impulsion (PWM) et le module d’alimentation à transistor bipolaire isolé (IGBT), qui peut changer la fréquence de travail à moyenne fréquence. Transformateur à moyenne fréquence de l’armoire. ainsi, il est caractérisé avec portable, smallsize, poids léger, faible consommation et etc..

Les paramètres de TIG V1841 V241 V341 AC / DC sur le panneau avant peuvent être ajustés continuellement et sans à-coup, tels que courant de démarrage, courant d’arc de cratère, courant de soudage, courant de base, rapport de service, temps de pente ascendante, temps descendant, post-gaz, fréquence d’impulsion, fréquence CA, équilibre, démarrage à chaud, force d’arc etc. Lors du soudage, il faut une haute fréquence et une haute tension pour amorcer l’arc pour assurer le taux de succès de l’arc d’allumage.

Caractéristiques du TIG V1841 V 241 V341 AC / DC :
◆ Système de contrôle MCU, répond immédiatement à tout changement.

◆ Haute fréquence et haute tension pour l’amorçage de l’arc afin d’assurer le taux de succès pour l’arc d’allumage, l’allumage à polarité inversée assure un bon comportement à l’allumage lors du soudage TIG-AC.

◆ Évitez les arcs électriques à CA avec des moyens spéciaux, même si l’arc se brise, le HF maintiendra l’arc stable.

◆ Pédale contrôle le courant de soudage.

◆ En DC TIG sans fonctionnement HF, si l’électrode en tungstène touche la pièce à souder lors du soudage, le courant tombera en court-circuit pour protéger le tungstène.

◆ Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés ont été signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.

◆ Double objectif: onduleur AC TIG / MMA et onduleur DC TIG / MMA, excellente performance sur alliage AL, acier au carbone, acier inoxydable, titane.

Selon le choix des fonctions du panneau avant, les cinq méthodes de soudage suivantes peuvent être réalisées.

DC MMA
DC TIG
DC Pulse TIG
AC TIG
AC Pulse TIG
1. Pour DC MMA, la connexion de polarité peut être choisie en fonction des différentes électrodes.
2. Pour DC TIG, DCEP est utilisé normalement (pièce à usiner reliée à la polarité positive, alors que la torche est connectée à la polarité négative), cette connexion a beaucoup de caractères, tels que l’arc de soudure stable, la basse perte de poteau de tungstène, plus de courant de welding, la soudure étroite et profonde.
1.2 Principe de fonctionnement

Le principe de fonctionnement de machines à soudage de TIG V1841 V241 V341 AC / DC monophasée 230V est représenté par la figure suivante. La fréquence de travail AC est rectifiée en courant continu DC (environ 312V), puis convertie en courant alternatif AC moyenne fréquence (environ 20-40KHz) par le dispositif onduleur (module IGBT), après réduction de la tension par transformateur moyen (transformateur principal) et rectification par le redresseur de fréquence moyenne (diodes de rétablissement rapide), puis est sortie DC ou AC en sélectionnant le module IGBT. Le circuit adopte la technologie de contrôle de rétroaction actuelle pour assurer la sortie de courant de manière stable. Pendant ce temps, le paramètre de courant de soudage peut être ajusté en continu et sans à-coup pour répondre aux exigences des métiers de soudage.

1.3 Caractéristique Volt- Ampère

TIG V1841 / V241 / V341 AC / DC Machine de soudage a une excellente caractéristique de volt-amper, dont le graphe est représenté comme la figure suivante. La relation entre la tension de charge nominale U_2 classique et le courant de soudage classique I_2 est la suivante:

\[U_2 = 10 + 0.04I_2 \text{ (V)} \]

Lorsque $I_2 \leq 600A$, $U_2 = 10 + 0.04I_2$ (V);
Quand $I_2 > 600A$, $U_2 = 34$ (V).

Note 1: Le courant d'entrée effectif doit être utilisé pour déterminer la taille du câble et les exigences d'alimentation.

1.4 Spécifications V1841/V241

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL V1841 AC/DC</th>
<th>VECTOR DIGITAL V241 AC/DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>10.9 kg</td>
<td>21.9 kg</td>
</tr>
<tr>
<td>Dimensions de la source</td>
<td>H395mmxW180mmxD375mm</td>
<td>H525mmxW260mmxD445mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>10 - 170A</td>
<td>10 - 200A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode TIG DC)</td>
<td>10 - 180A</td>
<td>10 - 200A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>20A</td>
<td>29.5A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>33.9A</td>
<td>41.7A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>11.7KVA</td>
<td>14.4kVA</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>170A @ 35%, 26.8V</td>
<td>170A @ 35%, 26.8V</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE

Note 1: Le courant d'entrée effectif doit être utilisé pour déterminer la taille du câble et les exigences d'alimentation.

Note 2: Exigences du générateur au cycle de rendement maximal..

Note 3: Des fusibles de démarrage du moteur ou des disjoncteurs thermiques sont recommandés pour cette application. Vérifiez les exigences locales pour votre situation à cet égard.

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.
1.5 Specifications V341

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL V341 AC/DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>26.4 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H525mmxW260mmxD445mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>30 - 300A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode TIG DC)</td>
<td>10 - 300A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>12.4A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>17.5A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>18.2 KVA</td>
</tr>
<tr>
<td>BÂTON (MMA)Sortie dsoudure, 40°C, 10 min.</td>
<td>300A @ 50%, 32.0V 212A @ 100%, 28.5V</td>
</tr>
<tr>
<td>TIG (GTAW)Sortie de soudure, 40°C, 10 min.</td>
<td>300A @ 50%, 22.0V 212A @ 100%, 18.5V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE

Note 1: Le courant d'entrée effectif doit être utilisé pour déterminer la taille du câble et les exigences d'alimentation.

Note 2: Exigences du générateur au cycle de rendement maximal.

Note 3: Des fusibles de démarrage du moteur ou des disjoncteurs thermiques sont recommandés pour cette application. Vérifiez les exigences locales pour votre situation à cet égard.

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.

1.6 Cycle de service

Le rapport cyclique nominal d'une source d'alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l'exemple suivant. Supposons qu'une source d'alimentation de soudage soit conçue pour fonctionner à un cycle de service de 50%, 300 ampères à 32 volts. Cela signifie qu'il a été conçu et construit pour fournir l'amprage nominal (300 A) pendant 5 minutes, c'est-à-dire le temps de soudage à l'arc, toutes les 10 minutes (50% de 10 minutes sont 5 minutes). Pendant les 5 autres minutes de la période de 10 minutes, la source d'alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

1.7 Articles emballés

V1841/V241
- Cordon d'alimentation 3M
- Porte-électrode 200 Amp avec câble 3M
- Pince de mise à la terre 200 ampères avec câble 3M
- Torche TIG 4M WP26
- Tuyau de gaz 3M
- Manuel d'utilisation

V341
- Cordon d'alimentation 3M
- Porte-électrode 300 Amp avec câble 3M
- Pince de mise à la terre 300 ampères avec câble 3M
- Torche TIG 4M WP18
- Tuyau de gaz 3M
- Manuel d'utilisation
1. Ampèremètre Numérique / Paramètre mètre

L’ampèremètre numérique est utilisé pour afficher le courant de sortie réel de la source d’alimentation. Il est également utilisé pour afficher les paramètres en mode de programmation. En fonction du paramètre de programmation sélectionné, l’indicateur d’état adjacent à l’ampèremètre s’allume pour indiquer les unités du paramètre de programmation. Lors du soudage, l’ampèremètre affiche le courant de soudage réel.

2. Indicateur de mise sous tension

L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

3. Indicateur de surcharge thermique

Cette source d’alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s’allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d’alimentation sera désactivée. Une fois que la source d’alimentation se refroidit, cette lumière s’éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

4. Force de l’arc / démarrage à chaud / démarrage à chaud actuel

Définir des plages

Force de l’arc: 1-100 AMP
Démarrage à chaud: 0.1-0.5 S
Démarrage à chaud actuel: 1-100 AMP

Changez le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer le temps jusqu’à la force de l’arc à partir de l’affichage numérique.

5. JOB et SAVE

Vous pouvez appuyer sur JOB pour sélectionner les enregistrements de mémoire que vous avez sauvegardés par 1-9. Pour le nouveau réglage des ampères actuels, il suffit d’appuyer sur SAVE.

6. Bouton de Mode

Appuyez sur le bouton MODE pour basculer la sortie AC et DC en LIFT TIG, HF TIG.

7. Bouton de contrôle du mode de déclenchement (Que mode HF TIG/LIFT TIG)

Le contrôle du mode de déclenchement est utilisé pour commuter la fonctionnalité du déclencheur de la torche entre 2T et 4T.

Mode Normal 2T, dans ce mode, le déclencheur de la torche doit rester enfoncé pour que la sortie de soudage soit active.

Appuyez sur la gâchette de la torche et maintenez-la enfoncée pour activer la source d’alimentation (soudure). Relâchez la gâchette de la torche pour arrêter le soudage.

Mode de verrouillage 4T, ce mode de soudage est principalement utilisé pour les longs cycles de soudage afin de réduire la fatigue de l’opérateur. Dans ce mode, l’opérateur peut appuyer et relâcher le déclencheur de la torche et la sortie restera active. Pour désactiver la source d’alimentation, le déclencheur de la torche doit à nouveau être enfoncé et relâché, ce qui évite à l’opérateur de devoir maintenir le déclencheur de la torche.
8. Bouton de sélection de processus
Le contrôle de sélection de processus est utilisé pour sélectionner le mode de soudage souhaité. Deux modes sont disponibles, GTAW (TIG) et MMA (Stick).

9. Bouton d’impulsion
Appuyez sur le bouton PULSE pour activer et désactiver le mode d’impulsion

TIG pulsé conventionnel

<table>
<thead>
<tr>
<th>Contexte AMPS (% du pic)</th>
<th>TPS</th>
<th>Cycle d’impulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>De pointe AMPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typiquement de 1 à 10 PPS. Fournit un effet de chauffage et de refroidissement sur la flaque de soudure et peut réduire la distorsion en abaissant l’intensité moyenne. Cet effet de chauffage et de refroidissement produit également un motif d’ondulation distinct dans le cordon de soudure. La relation entre la fréquence d’impulsion et la vitesse de déplacement détermine la distance entre les ondulations. La pulsation lente peut également être coordonnée avec l’ajout de métal d’apport et augmenter le contrôle global de la flaque de soudure.

TIG pulsé à grande vitesse

<table>
<thead>
<tr>
<th>Contexte AMPS (% du pic)</th>
<th>TPS</th>
<th>Cycle d’impulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>De pointe AMPS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Au-delà de 40 PPS, le TIG pulsé devient plus audible que visible, provoquant une agitation accrue des flaqués pour une meilleure microstructure soudeée. L’impulsion du courant de soudage à haute vitesse - entre un pic élevé et un ampérage de fond faible - peut également resserrer et focaliser l’arc. Ceci entraîne une stabilité maximale de l’arc, une pénétration accrue et des vitesses de déplacement accrues (plage commune: 100-500 PPS).

Les effets d’accentuation d’arc des impulsions à grande vitesse sont étendus à de nouvelles dimensions. La capacité à pulsé à 5 000 PPS améliore encore la stabilité de l’arc et le potentiel de concentration, ce qui est extrêmement bénéfique pour l’automatisation lorsque des vitesses de déplacement maximales sont requises.

10. Indicateurs de paramètres de la Programmation
Ces voyants s’allumeront lors de la programmation.

11. Contrôle positif
Le bouton positif est utilisé pour sélectionner plus dans la séquence de programmation.

12. Negative Kontrolle
Le bouton Négatif est utilisé pour moins sélectionner dans la séquence de programmation.

13. Sélection du bouton de fonction
Ce bouton peut sélectionner différents paramètres de programmation du n° 10.

14. Terminal de soudage négatif
Terminal de soudage négatif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

15. Sortie de gaz de protection
La sortie de gaz de protection située sur le panneau avant est une connexion rapide d’une torche TIG appropriée.

16. Prise de contrôle à broche
Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d’alimentation de soudage: Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d’une montre.

17. Terminal de soudage positif
Terminal de soudage positif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

2.2 Panneau de contrôle
ÉQUIPEMENT DE LA SÉRIE AC / DC

Opération

1. Pré-flux de gaz
 Plage de réglage absolu 0.1s à 5s (incréments de 0.1s)
 Ce paramètre fonctionne uniquement en mode TIG et sert à fournir du gaz à la zone de soudage avant de frapper l’arc, une fois que l’interrupteur de déclenchement de la torche a été pressé. Ce contrôle est utilisé pour réduire considérablement la porosité de la soudure au début d’une soudure.

2. Courant initial
 Plage de réglage du courant principal 10AMP à 100AMP
 Ce paramètre fonctionne uniquement dans les modes TIG (4T) et sert à définir le courant de démarrage pour TIG. Le courant de démarrage reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
 Remarque: Le courant initial maximal disponible sera limité à la valeur de consigne du courant de base

3. Up Slope
 Plage de réglage: 0.1S-10S (incréments de 0.1S)
 Ce paramètre fonctionne uniquement en mode TIG (2T et 4T) et sert à régler le temps nécessaire pour que le courant de soudage augmente, après que le commutateur de déclenchement de la torche a été pressé puis relâché, du courant initial au courant élevé ou de base.

4. Courant de pointe
 Définir des plages
 V1841: 10-180A (DC TIG et AC HF TIG), 10-170A (mode Stick)
 Ce paramètre définit le courant TIG WELD. Ce paramètre définit également le courant de soudage STICK

5. Courant de base
 Définir des plages
 V1841: 10AMP à 180AMP (mode TIG DC), 10AMP à 180AMP (mode TIG AC HF)
 Courant secondaire (TIG) / courant de pause d’impulsion.

6. Largeur d’impulsion
 Plage de réglage 10%-90%
 Ce paramètre définit le pourcentage à temps de la FREQUENCE D’IMPULSIONS pour un courant de soudage élevé lorsque l’IMPULSION est activée.

7. Fréquence d’impulsion
 Plage de réglage 1HZ -200HZ
 Ce paramètre définit la FREQUENCE D’IMPULSIONS lorsque l’IMPULSION est activée.

8. Pente vers le bas
 Plage de réglage 0,1-10s
 Ce paramètre fonctionne uniquement dans les modes TIG et sert à régler le temps de descente du courant de soudage, après que le commutateur de déclenchement de la torche a été enfoncé pour mettre fin au courant. Ce contrôle est utilisé pour éliminer le cratère qui peut se former à la fin d’une soudure.

9. Courant de fin
 Plage de réglage 10A-180A
 Ce paramètre fonctionne uniquement en mode TIG (4T) et sert à régler le courant de fin pour TIG. Le courant de fin reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
 Remarque: Le courant de cratère maximal disponible sera limité à la valeur de consigne du courant de base.

10. Post-flux
 Plage de réglage 1.0-10S
 Ce paramètre fonctionne uniquement en mode TIG et sert à ajuster le temps d’écoulement du gaz après l’extinction de l’arc. Ce contrôle est utilisé pour réduire considérablement l’oxydation de l’électrode de tungstène.

11. Fréquence AC
 Plage de réglage 50HZ-200HZ
 Ce paramètre fonctionne uniquement en mode AC TIG et sert à régler la fréquence du courant de soudage AC.

Contrôle de fréquence AC
Contrôle la largeur du cône d’arc. L’augmentation de la fréquence AC fournit un arc plus concentré avec un contrôle directionnel accru.

Remarque: Diminuer la fréquence AC adoucit l’arc et élargit la flaque de soudure pour un cordon de soudure plus large.

ÉQUIPEMENT DE LA SÉRIE AC / DC

Opération
12. Wave Balance
Arrangement 10% - 50%
Ce paramètre fonctionne en mode AC TIG et est utilisé pour régler le taux de pénétration en fonction du nettoyage pour le courant de soudage alternatif. Généralement, WAVE BALANCE est réglé sur 50% pour le soudage AC STICK. La commande WAVE BALANCE change le rapport de pénétration en action de nettoyage de l’arc de soudage AC TIG. La pénétration maximale de la soudure est atteinte lorsque la commande WAVE BALANCE est réglée sur 10%. Le nettoyage maximum des alliages d’aluminium ou de magnésium fortement oxydés est obtenu lorsque la commande WAVE BALANCE est réglée sur 50%.

Contrôle de l’équilibre AC
L’action de nettoyage du contrôleur de l’arc. Le réglage du % EN de l’onde AC contrôle la largeur de la zone de gravure entourant la soudure.
Remarque: Réglez la commande d’équilibre AC pour une action de nettoyage d’arc adéquate sur les côtés et devant la flaque de soudure. L’équilibre en courant alternatif doit être réglé en fonction de la poids ou de l’épaisseur des oxydes.

2.3 Disposition pour le panneau V2 4 1 / V3 4 1

1. Bouton de réinitialisation (Bouton RESET)
Lorsque le logiciel a un problème, veuillez déclencher le bouton RESET.
2. Bouton d’impulsion
Appuyez sur le bouton PULSE pour activer et désactiver le mode d’impulsion.
Opération

ÉQUIPEMENT DE LA SÉRIE AC / DC

TIG pulsé conventionnel | TIG pulsé à grande vitesse

Typiquement de 1 à 10 PPS. Fournit un effet de chauffage et de refroidissement sur la flaque de soudure et peut réduire la distorsion en abaissant l'intensité moyenne. Cet effet de chauffage et de refroidissement produit également un motif d'ondulation distinct dans le cordon de soudure. La relation entre la fréquence d'impulsion et la vitesse de déplacement détermine la distance entre les onductions. La pulsation lente peut également être coordonnée avec l'ajout de métal d'apport et augmenter le contrôle global de la flaque de soudure.

Au-delà de 40 PPS, le TIG pulsé devient plus audible que visible, provoquant une agitattion accrue des flaques pour une meilleure microstructure soudée.

L’impulsion du courant de soudage à haute vitesse - entre un pic élevé et un ampèrage de fond faible - peut également resserrer et focaliser l’arc. Ceci entraîne une stabilité maximale de l’arc, une pénétration accrue et des vitesses de déplacement accrues (plage commune: 100-500 PPS).

Les effets d'accentuation d'arc des impulsions à grande vitesse sont étendus à de nouvelles dimensions. La capacité à pulser à 5 000 PPS améliore encore la stabilité de l'arc et le potentiel de concentration, ce qui est extrêmement bénéfique pour l'automatisation lors des vitesses de déplacement maximales sont requises.

3. Bouton de contrôle du mode de déclenchement (Que mode HF TIG/LIFT TIG)

Le contrôle du mode de déclenchement est utilisé pour commuter la fonctionnalité du déclencheur de la torche entre 2T et 4T. Mode Normal 2T, dans ce mode, le déclencheur de la torche doit rester enfoncé pour que la sortie de soudage soit active.

Appuyez sur la gâchette de la torche et maintenez-la enfoncée pour activer la source d'alimentation (soudure). Relâchez la gâchette de la torche pour arrêter le soudage.

4. Bouton de sélection de processus

Le contrôle de sélection de processus est utilisé pour sélectionner le mode de soudage souhaité. Deux modes sont disponibles, GTAW (TIG) et MMA (Stick).

5. Ampèremètre numérique

L’ampèremètre numérique est utilisé pour afficher le courant de sortie préréglé et le courant de sortie réel de la source d'alimentation.

En dehors des opérations de soudage, l’ampèremètre affiche une valeur d’intensité prédéfinie (prévisualisation). Cette valeur peut être ajustée en faisant varier le contrôle multifonction lorsque le voyant de paramétrage de programmation affiche BASE CURRENT.

6. Voltmètre numérique / paramètremètre

Voltmétrenumérique est utilisé pour afficher la tension de sortie réelle de la source d'alimentation. Il est également utilisé pour afficher les paramètres en mode de programmation.

Enfonction du paramètre de programmationsélectionné, l’indicateur d’état adjacent au Voltmètres'allume pour indiquer les unités du paramètre de programmation. Pendant le soudage, le voltmètre affiche la tension de soudage réelle.

7. Indicateur de mise sous tension

L'indicateur POWER ON s'allume lorsque l'interrupteur ON / OFF est en position ON et que la tension d'alimentation correcte est présente.

8° Indicateur de surcharge thermique

Cette source d'alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s'allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d'alimentation sera désactivée. Une fois que la source d'alimentation se refroidit, cette lumière s'éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

9° JOB et SAVE

Vous pouvez appuyer sur JOB pour sélectionner les enregistrements de mémoire que vous avez sauvegardés par 1-9. Pour le nouveau réglage des amperes actuels, il suffit d’appuyer sur SAVE.
10. Indicateurs de paramètres de la Programmation
Ces voyants s'allumeront lors de la programmation.

11. Bouton HF
Appuyez et maintenez le bouton HF pour purger la ligne de gaz dans les modes LIFT TIG et HF TIG. Pour HF la ligne de gaz de protection dans les modes LIFT TIG et HF TIG, appuyez sur le bouton HF et le relâchez.

12. Bouton de Mode
Appuyez sur le bouton MODE pour basculer la sortie AC et DC en LIFT TIG, HF TIG.

13. Bouton de programmation avant
Appuyez sur ce bouton pour passer à l'étape suivante de la séquence de programmation.

14. Bouton de programmation arrière
Appuyez sur ce bouton pour revenir à l'étape précédente de la séquence de programmation.

15. Contrôle positif
Le bouton positif est utilisé pour sélectionner plus dans la séquence de programmation

16. Negative Kontrolle
Le bouton Négatif est utilisé pour moins sélectionner dans la séquence de programmation.

17. Terminal de soudage positif
Terminal de soudage positif. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

18. Prise de contrôle à broche
Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d'alimentation de soudage. Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d'une montre.

19. Terminal de soudage négatif
Terminal de soudage négatif. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

20. Sortie de gaz de protection
La sortie de gaz de protection située sur le panneau avant est une connexion rapide d'une torche TIG appropriée

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne
7. Fréquence d’impulsion
Plage de réglage 1HZ -200HZ
Ce paramètre définit la FREQUENCE D’IMPULSIONS lorsque l’IMPUSSION est activée.

8. Pente vers le bas
Plage de réglage 0,1-10s
Ce paramètre fonctionne uniquement dans les modes TIG et sert à régler le temps de descente du courant de soudage, après que le commutateur de déclenchement de la torche a été enfoncé pour mettre fin au courant. Ce contrôle est utilisé pour éliminer le cratère qui se forme à la fin d’une soudure.

9. Courant de fin
V241: Plage de réglage 10A-200A
V341: Plage de réglage 10A-300A
Ce paramètre fonctionne uniquement en mode TIG (4T) et sert à régler le courant de fin pour TIG. Le courant de fin reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
Remarque: Le courant de cratère maximal disponible sera limité à la valeur de consigne du courant de base.

10. Post-flux
V241: Plage de réglage 1-20S
V341: Plage de réglage 1-20S
Ce paramètre fonctionne uniquement en mode TIG et sert à ajuster le temps d’écoulement du gaz après l’extinction de l’arc. Ce contrôle est utilisé pour réduire considérablement l’oxydation de l’électrode de tungstène.

11. Fréquence AC
Plage de réglage 50HZ-200HZ
Ce paramètre fonctionne uniquement en mode AC TIG et sert à régler la fréquence du courant de soudage AC.

Contrôle de fréquence AC
Contrôle la largeur du cône d’arc. L’augmentation de la fréquence AC fournit un arc plus concentré avec un contrôle directionnel accru.
Remarque: Diminuer la fréquence AC adoucit l’arc et élargit la flaque de soudure pour un cordon de soudure plus large.

12. Wave Balance
Arrangement 10% -50%
Ce paramètre fonctionne en mode AC TIG et est utilisé pour régler le taux de pénétration en fonction du nettoyage pour le courant de soudage alternatif. Généralement, WAVE BALANCE est réglé sur 50% pour le soudage AC STICK. La commande WAVE BALANCE change le rapport de pénétration en action de nettoyage de l’arc de soudage AC TIG. La pénétration maximale de la soudure est atteinte lorsque la commande WAVE BALANCE est réglée sur 10%. Le nettoyage maximum des alliages d’aluminium ou de magnésium fortement oxydés est obtenu lorsque la commande WAVE BALANCE est réglée sur 50%.

Contrôle de l’équilibre AC
L’action de nettoyage du contrôle de l’arc. Le réglage du % EN de l’onde AC contrôle la largeur de la zone de gravure entourant la soudure.
Remarque: Réglez la commande d’équilibre AC pour une action de nettoyage d’arc adéquate sur les côtés et devant la flaque de soudure. L’équilibre en courant alternatif doit être réglé en fonction de la position ou de l’épaisseur des oxydes.

13. Démarrage à chaud
La fonction de démarrage à chaud allume de manière fiable l’électrode et fond parfaitement pour assurer la meilleure qualité même au début de la couture. Cette solution fait que le manque de fusion et de soudure à froid désormais partie du passé et réduit considérablement le renforcement des soudures. Réglez le courant de démarrage à chaud ici et l’heure ici.
2.5 Configuration pour le soudage STICK (MMA)

Pour l’électrode alcaline, connectez le porte-électrode au point de soudage positif et raccordez le fil de travail à la borne de soudage négative, tandis que pour l’électrode acide, connectez le porte-électrode au point de soudage négatif et connectez le fil de travail au terminal de soudage positif. En cas de doute, consultez le fabricant de l’électrode. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique. Sélectionnez le mode STICK avec le contrôle de sélection de processus.

2.6 Mise en place pour le soudage LIFT TIG (GTAW)

La configuration suivante est connue sous le nom de Polarité Droite ou électrode CC positive. Ceci est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l’acier et l’acier inoxydable.

1. Mettez l’interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.
2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
3. Connectez la conduite de gaz / tuyau à la source de gaz de protection appropriée.
4. Ouvrez lentement la valve du cylindre d'argon en position complètement ouverte.
5. Connectez la pince de fil de travail à votre pièce de travail.
6. Le tungstène doit être broyé à un point émoussé (similaire à un crayon) afin d'obtenir des résultats de soudage optimaux. Voir l'illustration. Il est essentiel de meuler l'électrode en tungstène dans le sens de rotation de la meule. Broyer à un angle de 30 degrés et jamais à un point pointu.
7. Installez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.
8. Serrez le capuchon arrière.
10. Réglez le processus de soudage à LIFT TIG.
11. Réglez le bouton de contrôle du courant de soudage à l'intensité désirée.
12. Vous êtes maintenant prêt à commencer l'alimentation électrique de soudage de LIFT TIG.

2.7 Environnement d'exploitation

- La hauteur au-dessus du niveau de la mer est inférieure à 1000m.
- Plage de température de fonctionnement: -10°C ~ +40°C.
- L'humidité relative est inférieure à 90% (20 °C).
- Positionnez de préférence la machine sous certains angles au-dessus du niveau du sol, l'angle maximum ne doit pas dépasser 15°.
- La teneur en poussière, acide, gaz corrosif dans l'air ambiant ou la substance ne peut pas dépasser la norme normale.
- Veillez à ce qu'il y ait une ventilation suffisante pendant le soudage. Il y a au moins 30 cm de liberté entre la machine et le mur.

2.8 Avis d'opération

- Lisez attentivement les instructions de sécurité et le chapitre 1 avant d'essayer d'utiliser cet équipement.
- Connectez le fil de terre à la machine directement
- En cas de fermeture de l'interrupteur d'alimentation, une tension à vide peut être exportée. Ne touchez pas la sortie d'électrode avec une partie de votre corps.
- Avant l'opération, aucune personne concernée ne doit être laissée. Ne pas regarder l'arc dans les yeux sans protégés.
- Assurez une bonne ventilation de la machine pour améliorer le taux de service.
- Éteignez le moteur lorsque l'opération est terminée pour économiser la source d'énergie.
- Lorsque l'interrupteur d'alimentation s'éteint de manière protectrice en raison d'une défaillance. Ne le redémarrez pas tant que le problème n'est pas résolu. Sinon, l'étendue du problème sera étendue.
3.1 Dépannage

- Avant que les machines de soudage à l’arc soient expédiées de l’usine, elles ont déjà été débuguées avec précision. Donc, il est interdit à quiconque qui n’est pas autorisé par nous d’apporter des modifications à l’équipement!
- Le cours d’entretien doit être utilisé avec soin. Si un fil devient flexible ou est mal placé, c’est peut-être un danger potentiel pour l’utilisateur!
- Seul le personnel d’entretien professionnel qui est autorisé par nous pourrait réviser le machine!
- Garantie de couper l’alimentation de la machine de soudage à l’arc avant d’activer le contour de l’équipement!
- S’il y a un problème et il n’y a pas le personnel d’entretien professionnel autorisé, s’il vous plaît contacter l’agent local ou la succursale!

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allumez la source d’alimentation, le voyant d’alimentation est allumé, le ventilateur ne fonctionne pas.</td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il y a quelque chose dans le ventilateur</td>
<td>Le nettoyer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le condensateur de démarrage du ventilateur endommagé</td>
<td>Changer le condensateur</td>
</tr>
<tr>
<td>2</td>
<td>Allumez la source d’alimentation, le ventilateur fonctionne, l’indicateur d’alimentation n’est pas allumé</td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La connection du câble d’alimentation n’est pas bon</td>
<td>Connecter correctement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d’alimentation est cassé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L’interrupteur de mise sous tension est endommagé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La lumière de l’indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
<td>Changer la lumière de l’indicateur d’alimentation ou se référer à la solution dans Nr. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td>3</td>
<td>Allumez la source d’alimentation, le ventilateur ne fonctionne pas, le voyant d’alimentation n’est pas allumé</td>
<td>Le tableau de commande est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1er circuit onduleur endommagé</td>
<td>Le réparer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2ème circuit de retour est la faute</td>
<td>Le changer</td>
</tr>
<tr>
<td>4</td>
<td>Allumez la source d’alimentation, l’indicateur d’alimentation est allumé, le ventilateur fonctionne, il n’y a pas de sortie de soudage.</td>
<td>Le tableau de commande est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Si l’indicateur de surchauffe est allumé</td>
<td>Attendre quelques minutes, la machine peut fonctionner normalement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le circuit principal est cassé</td>
<td>Vérifier et réparer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La machine est cassée</td>
<td>Consulter le revendeur ou le fabricant</td>
</tr>
<tr>
<td>5</td>
<td>Pas de sortie de tension à vide (MMA)</td>
<td>Si l’indicateur de surchauffe est allumé</td>
<td>Attendre quelques minutes, la machine peut fonctionner normalement</td>
</tr>
</tbody>
</table>

ÉQUIPEMENT DE LA SÉRIE AC / DC

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Le numéro de l’affichage n’est pas intact</td>
<td>Le panneau d’affichage est endommagé</td>
<td>Changer le panneau d’affichage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tube numérique est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage n’est pas connecté avec les deux sorties si le soudeur</td>
<td>Connecter le câble de soudage à la sortie du soudeur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage est endommagé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td>7</td>
<td>L’arc ne peut pas être allumé (TIG), il y a une étincelle sur le tableau d’allumage HF</td>
<td>Le câble de terre connecté de manière instable</td>
<td>Consulter le revendeur ou le fabricant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage est trop long</td>
<td>Utiliser un câble de soudage approprié</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il y a de l’huile ou de la poussière sur la pièce</td>
<td>Vérifier et l’effacer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La distance entre l’électrode de tungstène et la pièce est trop longue</td>
<td>Réduire la distance (environ 3mm, moins de 5mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II n’y a pas de flux d’Argon ou la connexion est mauvaise</td>
<td>Vérifier et reconnecter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d’entrée n’est pas stable</td>
<td>Vérifier l’alimentation</td>
</tr>
<tr>
<td>8</td>
<td>L’arc ne peut pas être allumé (TIG), il n’y a pas d’étincelle sur le tableau d’allumage HF</td>
<td>Le tableau d’allumage HF ne fonctionne pas</td>
<td>Réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La distance entre le déchargeur est trop courte ou trop longue</td>
<td>Réglé la distance (environ 0.8mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le dysfonctionnement de l’interrupteur du pistolet de soudage</td>
<td>Vérifier l’interrupteur de la torche de soudage, le câble de commande et la douille aérodynamique.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pas de flux de gaz argon ou le tube d’air se connecter pas bon</td>
<td>Vérifier et reconnecter</td>
</tr>
<tr>
<td>9</td>
<td>Allumez la source d’alimentation, tout est normal, mais pas d’allumage HF</td>
<td>Vérifier si la fonction sélectionnée MMA</td>
<td>Changer la fonction en TIG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vérifier que la fonction HF est sélectionnée</td>
<td>Sélectionner la fonction HF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau HF est cassé</td>
<td>Réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La pince de terre n’est pas stable</td>
<td>Vérifier la pince de terre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pas de flux de gaz argon ou le tube d’air se connecter pas bon</td>
<td>Vérifier et reconnecter</td>
</tr>
<tr>
<td>10</td>
<td>Pas de flux de gaz (TIG)</td>
<td>Le cylindre de gaz est proche ou la pression du gaz est basse</td>
<td>Ouvrir ou changer le cylindre de gaz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quelque chose est dans la valve</td>
<td>Le retirer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La soueape électromagnétique est endommagée</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tube d’air est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pression trop élevée ou le régulateur d’air est cassé</td>
<td>Vérifier le gaz</td>
</tr>
<tr>
<td>11</td>
<td>Le gaz circule toujours</td>
<td>Quelque chose est dans la valve</td>
<td>Le retirer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La soueape électromagnétique est endommagée</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le courant de soudage ne peut pas être ajusté</td>
<td>Séparer l’électrode et la pièce à travailler</td>
</tr>
<tr>
<td>12</td>
<td>Le tableau de commande est cassé</td>
<td>Le réparer ou changer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Couper l’alimentation en changeant la torche</td>
<td></td>
</tr>
</tbody>
</table>
ÉQUIPEMENT DE SÉRIE STICK

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Pas de sortie AC en sélectionnant "AC"</td>
<td>Le panneau d'alimentation est cassé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La carte d'alimentation CA endommagée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le module AC IGBT / IGBT endommagé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tableau de commande est cassé</td>
</tr>
<tr>
<td>14</td>
<td>Le courant de soudage affiché n'est pas conforme à la valeur réelle</td>
<td>La valeur minimale affichée ne correspond pas à la valeur réelle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La valeur maximale affichée ne correspond pas à la valeur réelle</td>
</tr>
<tr>
<td>15</td>
<td>La pénétration de la piscine fondue ne suffit pas</td>
<td>Le courant de soudage est réglé trop bas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L’arc est trop long dans le processus de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d’alimentation ou le câble de soudage est trop long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le réglage de la largeur AC n’est pas correct</td>
</tr>
<tr>
<td>16</td>
<td>Le voyant de surcharge thermique est allumé</td>
<td>Protection contre la surchauffe, trop de courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre la surchauffe, ravail trop de temps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre les surintensités, le courant dans le circuit principal est hors de contrôle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d’entrée est trop faible</td>
</tr>
<tr>
<td>17</td>
<td>L'électrode Tig fond lors du soudage</td>
<td>Le panneau d'alimentation est cassé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La torche Tig est connectée à la borne positive</td>
</tr>
<tr>
<td>18</td>
<td>Flutters d'arc pendant le soudage Tig</td>
<td>L'électrode de tungstène est trop grande pour le courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vérifier la position de la pince de terre sur la pièce à travail</td>
</tr>
</tbody>
</table>

Dépannage

<table>
<thead>
<tr>
<th>ÉQUIPEMENT DE LA SÉRIE AC / DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÉQUIPEMENT DE SÉRIE STICK</td>
</tr>
<tr>
<td>Série E</td>
</tr>
</tbody>
</table>

CHAPITRE 2

ÉQUIPEMENT DE SÉRIE STICK

EN
1.1 Introduction Courte
La machine de soudage E161 E201 E221 E301 E401 adopte la dernière technologie de modulation de largeur d’impulsion (PWM) et le module d’alimentation à transistor bipolaireisolé (IGBT), qui peut changer la fréquence de travail à moyenne fréquence, transformateur à moyenne fréquence de l’armoire. ainsi, il est caractérisé avec portable, smallsize, poids léger, faible consommation et etc.

Caractéristiques du E161 E201 E221 E301 E401:
◆ Système de contrôle MCU, répond immédiatement à tout changement.
◆ Haute tension pour l’allumage à l’arc pour assurer le taux de succès de l’arc d’allumage.
◆ Pédale contrôle le courant de soudage.
◆ En DC TIG sans fonctionnement HF, si l’électrode de tungstène touche la pièce à souder lors du soudage, le courant tombera en court-circuit pour protéger le tungstène.
◆ Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés ont été signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.
◆ anti-adhérence est automatiquement apparaîtr lorsque l’électrode adhère à la pièce pendant plus de 2 secondes, le courant de sortie descend jusqu’à environ 20A afin de séparer facilement l’électrode et le porte-électrode pour protéger la soudeuse.

1.2 Principe de fonctionnement
Le principe de fonctionnement de machines à soudage de TIG T231 T331 monophasée 230V est représenté par la figure suivante. La fréquence de travail AC est rectifiée en courant continu DC (environ 312V), puis convertie en courant alternatif AC moyenne fréquence (environ 20-40KHz) par le dispositif onduleur (module IGBT), après réduction de la tension par transformateur moyen (transformateur principal) et rectification par le redresseur de fréquence moyenne (diodes de rétablissement rapide), puis est sortie DC ou AC en sélectionnant le module IGBT. Le circuit adopte la technologie de contrôle de rétroaction actuelle pour assurer la sortie de courant de manière stable. Pendant ce temps, le paramètre de courant de soudure peut être ajusté en continu et sans à-coup pour répondre aux exigences des métiers de soudage.

1.3 Spécifications E161 / E201

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL E161 STICK</th>
<th>VECTOR DIGITAL E201 STICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>9.6kg</td>
<td>10 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H390mmxW180mmxD390mm</td>
<td>H390mmxW180mmxD390mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d’alimentation de l’onduleur</td>
<td>Source d’alimentation de l’onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d’alimentation</td>
<td>230V +/- 15%</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d’approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>10 - 160A</td>
<td>20 - 200A</td>
</tr>
<tr>
<td>Courant d’entrée effectif</td>
<td>19.8A</td>
<td>22.8A</td>
</tr>
<tr>
<td>Courant d’entrée maximum</td>
<td>31.4A</td>
<td>41.7A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>10.8kVA</td>
<td>14.4kVA</td>
</tr>
<tr>
<td>BÂTON (MMA)Sortie de soudure, 40ºC, 10 min.</td>
<td>160A @ 40%, 26. 4V</td>
<td>200A @30%, 28V</td>
</tr>
<tr>
<td></td>
<td>101A @100%, 24V</td>
<td>110A @ 100%, 24.4V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE
En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l’installation, de l’utilisation, des applications, de la maintenance et du service corrects.

1.4 Articles emballés
E161/E201
◆ Cordon d’alimentation 3M
◆ Porte-électrode 200 Amp avec câble 3M
◆ Pince de mise à la terre 200 ampères avec câble 3M
◆ Manuel d’utilisation
1.5 Cycle de service

Le rapport cyclique nominal d’une source d’alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l’exemple suivant. Supposons qu’une source d’alimentation de soudage soit conçue pour fonctionner à un cycle de service de 40%, 200 ampères à 28 volts. Cela signifie qu’il a été conçu et construit pour fournir l’amphérage nominal (200 A) pendant 4 minutes, c’est-à-dire le temps de soudage à l’arc, toutes les 10 minutes (40% de 10 minutes sont 4 minutes). Pendant les 6 autres minutes de la période de 10 minutes, la source d’alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

1.6 Spécifications E221

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL E221 STICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>10.59 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H390mmxW180mmxD390mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>10 - 200A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode TIG DC)</td>
<td>5-170A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>26.3A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>41.7 A</td>
</tr>
<tr>
<td>Exigence de génératrice monophasé</td>
<td>14.4KVA</td>
</tr>
<tr>
<td>BÂTON (MMA) Sortie soudure, 40°C, 10 min.</td>
<td>200A @ 40%, 26V / 126A @ 100%, 25V</td>
</tr>
<tr>
<td>TIG (GTAW) Sortie soudure, 40°C, 10 min.</td>
<td>200A @ 40%, 18V / 126A @ 100%, 15V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
</tbody>
</table>

ÉQUIPEMENT DE SÉRIE STICK

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l’installation, de l’utilisation, des applications, de la maintenance et du service corrects.

1.7 Articles emballés

- Cordon d’alimentation 3M
- Porte-électrode 200 Amp avec câble 3M
- Pince de mise à la terre 200 ampères avec câble 3M
- Torche TIG 4M WP26
- Manuel d’utilisation

1.8 Cycle de service

Le rapport cyclique nominal d’une source d’alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l’exemple suivant. Supposons qu’une source d’alimentation de soudage soit conçue pour fonctionner à un cycle de service de 40%, 200 ampères à 28 volts. Cela signifie qu’il a été conçu et construit pour fournir l’amphérage nominal (200 A) pendant 5 minutes, c’est-à-dire le temps de soudage à l’arc, toutes les 10 minutes (40% de 10 minutes sont 4 minutes). Pendant les 6 autres minutes de la période de 10 minutes, la source d’alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.
1.9 Spécifications04 E301/E401

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL E301 STICK</th>
<th>VECTOR DIGITAL E401 STICK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>19.2 kg</td>
<td>26.3 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H515mmxW224mmxD375mm</td>
<td>H540mmxW235mmxD445mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>400V +/- 15%</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>30 - 300A</td>
<td>30 - 400A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>13.6A</td>
<td>20.4A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>17.5 A</td>
<td>26.3 A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>18.2KVA</td>
<td>27.3KVA</td>
</tr>
<tr>
<td>BÂTON (MMA) Sortie de soudure, 40°C, 10 min.</td>
<td>300A @ 60%, 32V</td>
<td>400A @ 60%, 36V</td>
</tr>
<tr>
<td></td>
<td>232A @ 100%, 29.3V</td>
<td>310A @ 100%, 32.4V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.

1.10 Articles emballés

E301/E401
- 3M Netzkabel
- 300 Ampere Elektrodenhalter 3M
- 300 Ampere Erdungsklemme 3M
- Benutzerhandbuch

1.11 Cycle de service

Le rapport cyclique nominal d'une source d'alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l'exemple suivant. Supposons qu'une source d'alimentation de soudage soit conçue pour fonctionner à un cycle de service de 60%, 400 ampères à 36 volts. Cela signifie qu'il a été conçu et construit pour fournir l'ampérage nominal (400 A) pendant 6 minutes, c'est-à-dire le temps de soudage à l'arc, toutes les 10 minutes (60% de 10 minutes sont 4 minutes). Pendant les 4 autres minutes de la période de 10 minutes, la source d'alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

Opération sûre (STICK)

2.1 Disposition pour le panneau E161/E201
3. Indicateur de mise sous tension
L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

2’ Indicateur de surcharge thermique
Cette source d’alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s’allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d’alimentation sera désactivée. Une fois que la source d’alimentation se refroidit, cette lumière s’éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

3. Ampèremètre numérique
L’ampèremètre numérique est utilisé pour afficher à la fois le courant de sortie préréglé et le courant de sortie réel de la source d’alimentation.

4. Sélection du bouton de fonction
Définir des plages:
Arcforce: 1-100AMP Hot-start: 0,1-0,5S Courant hotstart: 1-100 AMP
Appuyez sur ce bouton et relâchez-le pour changer le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer l’ARC Force à partir de l’affichage numérique

5. Contrôle positif
Le contrôle positif est utilisé pour régler le paramètre de la fonction sélectionnée à partir de 4.

6. Contrôle négatif
Le contrôle négatif est utilisé pour le paramètre de réglage moins pour la fonction sélectionnée à partir de 4.

7. Terminal de soudage négatif
Terminal de soudage négatif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

8. Terminal de soudage positif
Terminal de soudage positif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

AVERTISSEMENT
NE TOUCHEZ PAS le fil d’électrode pendant qu’il est alimenté dans le système. Le fil d’électrode sera au potentiel de tension de soudage.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.
5. **Negative Kontrolle**
Le contrôlenégatifestutilisé pour le paramètre de réglagemoins pour la fonctionsélectionnée à partir de 4.

4. **Ampèremètre numérique**
L’ampèremètre numérique est utilisé pour afficher à la fois le courant de sortie préréglé et le courant de sortie réel de la source d’alimentation.

5. **Negative Kontrolle**
Le contrôlenégatifestutilisé pour le paramètre de réglagemoins pour la fonctionsélectionnée à partir de 4.

6. **Sélection du bouton de fonction**
Définir des plages:
Arcforce: 1-100AMP Hot-start: 0,1-0,5S Courant hotstart: 1-100 AMP
Appuyez sur ce bouton et relâchez-le pour changer le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer l’ARC Force à partir de l’affichage numérique

7. **Contrôlepositif**
Le contrôlepositifestutilisé pour régler le paramètre de la fonctionsélectionnée à partir de 4.

8. **Terminal de soudage négatif**
Terminal de soudage négatif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

9. **Sortie de gaz de protection**
La sortie de gaz de protection située sur le panneau avant est une connexion rapide d’une torche TIG appropriée

10. **Prise de contrôle à broche**
Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d’alimentation de soudage. Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d’une montre.

11. **Terminal de soudage positif**
Terminal de soudage positif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

1. **Indicateur de mise sous tension**
L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

2. **Indicateur de surcharge thermique**
Cette source d’alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s’allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d’alimentation sera désactivée. Une fois que la source d’alimentation se refroidit, cette lumière s’éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne
3. Prévenir les chocs électriques
Le bouton VRD sur le panneau avant s'allume lorsque l'on appuie sur l'indicateur VRD, en même temps la tension à vide est inférieure à 15V et la borne de sortie n'est pas dangereuse pour le corps humain. Lorsque l'on appuie à nouveau sur le bouton, l'indicateur VRD la lumière s'éteint et la sortie est maintenant à 71V.

4. Sélection du bouton de fonction
Appuyez sur ce bouton et relâchez-le pour changer le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer l'ARC Force à partir de l'affichage numérique.

5. Ampèremètre numérique
L'ampèremètre numérique est utilisé pour afficher à la fois le courant de sortie préréglé et le courant de sortie réel de la source d'alimentation.

6. Negative Kontrolle
Le contrôlenégatif utilisé pour le paramètre de réglagemoins pour la fonction sélectionnée à partir de 4.

7. Contrôle positif
Le contrôle positif est utilisé pour régler le paramètre de la fonction sélectionnée à partir de 4.

8. Terminal de soudage positif
Terminal de soudage positif. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

9. Terminal de soudage négatif
Terminal de soudage négatif. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

10. Prise de contrôle à broche
Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d'alimentation de soudage. Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d’une montre.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

ÉQUIPEMENT DE SÉRIE STICK

<table>
<thead>
<tr>
<th>Opération</th>
<th>Opération</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Montage pour soudage LIFT TIG (GTAW) (uniquement pour E221)</td>
<td>Avant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés et recommandés.</td>
</tr>
</tbody>
</table>

REMARQUE
Les étapes suivantes supposent que vous avez déjà configuré le gaz de protection approprié comme indiqué dans la sous-section.

La configuration suivante est connue sous le nom de Polarité Droite ou électrode CC positive. Ceci est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l'acier et l'acier inoxydable.

1. Mettez l'interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.
2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
3. Branchez la conduite de gaz / tuyau à la source de gaz de protection appropriée et branchez la prise d'aviation pour l'interrupteur à détente à la prise de contrôle à 5 broches.
4. Ouvrezzlement la valve du cylindred'argonen position complètementouverte.
5. Connectez la pince de fil de travail à votre pièce de travail.
6. Le tungstènedoitêtrebroyé à un point émoussé (similaire à un crayon) afin d'obtenir des résultats de soudageoptimaux. Voir l'illustration. Il est essentiel de

2 à 2,5 fois le diamètre de l'électrode

7. stallez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.
8. Serrez le capuchon arrière.
10. Réglez le processus de soudage à LIFT TIG.
11. Réglez le bouton de contrôle du courant de soudage à l'intensité désirée.
12. Vous êtes maintenant prêt à commencer l'alimentation électrique de soudage de LIFT TIG.
2.5 Configuration pour le soudage STICK (MMA)

AVERTISSEMENT
Avant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés et recommandés.

REMARQUE
La configuration suivante est connue sous le nom de DC Electrode Positive ou Reverse Polarity. Veuillez consulter le fabricant de l’électrode STICK pour des recommandations de polarité spécifiques.

1. Mettez l'interrupteur ON / OFF (situé sur le panneau arrière) sur OFF
2. Attachez le STICK et actionnez la pince de mise à la terre comme indiqué dans la Figure
3. Réglez le processus de soudage sur STICK
4. Réglez le courant de soudage du contrôle positif et négatif à l’ampérage désiré. Définissez les différentes exigences pour le démarrage à chaud, l’heure de démarrage et la force d’arc aussi.
5. Installez une électrode STICK dans le porte-électrode
6. Vous êtes maintenant prêt à commencer le soudage STICK

REMARQUE
Pour souder, frapper doucement l’électrode sur la pièce à travail pour générer un arc de soudage, et se déplacer lentement le long de la pièce à travail tout en maintenant une longueur d’arc constante au-dessus du métal de base

AVERTISSEMENT
Il y a des niveaux de tension et de puissance extrêmement dangereux à l’intérieur de ce produit. N’essayez pas d’ouvrir ou de réparer, sauf si vous êtes un électricien qualifié et que vous avez suivi une formation approfondie sur les mesures de puissance et les techniques de dépannage.

Si des sous-ensembles complexes importants sont défectueux, la source d'alimentation de soudage doit être retournée à un revendeur accrédité pour réparation. Le niveau de base du dépannage est celui qui peut être effectué sans équipement spécial ou de connaissances. Reportez-vous également à la section 6.01-6.02 pour résoudre les problèmes de soudage.
Dépannage

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation est allumé, le ventilateur ne fonctionne pas.</td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td></td>
<td>Il y a quelque chose dans le ventilateur</td>
<td></td>
<td>Le nettoyer</td>
</tr>
<tr>
<td></td>
<td>Le condensateur de démarrage du ventilateur endommagé</td>
<td></td>
<td>Changer le condensateur</td>
</tr>
<tr>
<td>2</td>
<td>Allumez la source d'alimentation, le ventilateur fonctionne, l'indicateur d'alimentation n'est pas allumé.</td>
<td>Le voyant d'alimentation est endommagé ou la connexion n'est pas bonne</td>
<td>Changer la lumière d'alimentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Le panneau d'alimentation est cassé</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td>3</td>
<td>Allumez la source d'alimentation, le ventilateur ne fonctionne pas, le voyant d'alimentation n'est pas allumé.</td>
<td>La connexion du câble d'alimentation n'est pas bon</td>
<td>Connecter correctement</td>
</tr>
<tr>
<td></td>
<td>Le câble d'alimentation est cassé</td>
<td></td>
<td>Réparer ou changer</td>
</tr>
<tr>
<td></td>
<td>L'interrupteur de mise sous tension est endommagé</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>La lumière de l'indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
<td></td>
<td>Changer la lumière de l'indicateur d'alimentation ou se référer à la solution dans Nr. 2</td>
</tr>
<tr>
<td>4</td>
<td>Allumez la source d'alimentation, l'indicateur d'alimentation est allumé, le ventilateur fonctionne, il n'y a pas de sortie de soudage.</td>
<td>Le panneau d'alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Le tableau de commande est cassé</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>1er circuit onduleur endommagé</td>
<td></td>
<td>Réparer</td>
</tr>
<tr>
<td>5</td>
<td>Pas de sortie de tension à vide (MMA)</td>
<td>Si l'indicateur de surchauffe est allumé</td>
<td>Attendre quelques minutes, la machine peut fonctionner normalement</td>
</tr>
<tr>
<td></td>
<td>Le circuit principal est cassé</td>
<td>Vérifier et réparer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La machine est cassée</td>
<td>Consulter le revendeur ou le fabricant</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Le numéro de l'affichage n'est pas intact</td>
<td>Le panneau d'affichage est endommagé</td>
<td>Changer le panneau d'affichage</td>
</tr>
<tr>
<td></td>
<td>Le tube numérique est cassé</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td>7</td>
<td>Pas de flux de gaz (TIG)</td>
<td>Le cylindre de gaz est proche ou la pression du gaz est basse</td>
<td>Ouvrir ou changer le cylindre de gaz</td>
</tr>
<tr>
<td></td>
<td>Quelle chose est dans la valve</td>
<td></td>
<td>Le retirer</td>
</tr>
<tr>
<td></td>
<td>Le soupape électromagnétique est endommagée</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Le tube d'air est cassé</td>
<td></td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Pression trop élevée ou le régulateur d'air est cassé</td>
<td></td>
<td>Vérifier le gaz</td>
</tr>
<tr>
<td>8</td>
<td>Le gaz circule toujours</td>
<td>Quelle chose est dans la valve</td>
<td>Le retirer</td>
</tr>
<tr>
<td></td>
<td>La soupape électromagnétique est endommagée</td>
<td></td>
<td>Le changer</td>
</tr>
</tbody>
</table>

Équipement de série Stick

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Le courant de soudage ne peut pas être ajusté</td>
<td>Vérifier si l'électrode colle à la pièce que la fonction anti-adhérence est activée</td>
<td>Séparer l'électrode et la pièce à travailler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tableau de commande est cassé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td>10</td>
<td>Le courant de soudage affiché n'est pas conforme à la valeur réelle</td>
<td>Ajuster la valeur minimale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre Imin sur le tableau de commande</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La valeur maximale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre max sur le tableau de commande</td>
</tr>
<tr>
<td>11</td>
<td>La pénétration de la piscine fondue ne suffit pas</td>
<td>Le courant de soudage est réglé trop bas</td>
<td>Augmenter le courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L'arc est trop long dans le processus de soudage</td>
<td>Réglage de la largeur AC n'est pas correct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d'alimentation ou le câble de soudage est trop long</td>
<td>Changer la longueur appropriée du fabricant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le réglage de la largeur AC n'est pas correct</td>
<td>Changer pour un réglage approprié</td>
</tr>
<tr>
<td>12</td>
<td>Le voyant de surcharge thermique est allumé</td>
<td>Protection contre la surchauffe, trop de courant de soudage</td>
<td>Réduire le courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre la surchauffe, ravail trop de temps</td>
<td>Réduire le temps de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre les surintensités, le courant dans le circuit principal est hors de contrôle</td>
<td>Vérifier et réparer le circuit principal et la carte d'entraînement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d'entrée est trop faible</td>
<td>Vérifier l'alimentation</td>
</tr>
<tr>
<td>13</td>
<td>L'électrode Tig fond lors du soudage</td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La torche Tig est connectée à la borne positive</td>
<td>Connecter la torche tig à la borne négative</td>
</tr>
<tr>
<td>14</td>
<td>Flutter d'arc pendant le soudage Tig</td>
<td>L'électrode de tungstène est trop grande pour le courant de soudage</td>
<td>Sélectionner la bonne taille d'électrode de tungstène</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Séparer l'électrode et la pièce à travailler</td>
<td>Ajuster la position de la pince de terre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Séparer l'électrode et la pièce à travailler</td>
<td>Ajuster la position de la pince de terre</td>
</tr>
</tbody>
</table>
1.1 Introduction Courte

Machines à couper au plasma C41, C71 et C101 adopte la dernière technologie de modulation de largeur d’impulsion (PWM) et le module d’alimentation à transistor bipolaire isolé (IGBT), qui peut changer la fréquence de travail à moyenne fréquence. transformateur à moyenne fréquence de l’armoire. ainsi, il est caractérisé avec portable, smallsize, poids léger, faible consommation et etc.

Machines à couper au plasma C41, C71 et C101 Caractéristiques:
◆ Technologie IGBT.
◆ Avec filtre EMI pour minimiser la pollution du réseau électrifié
◆ Haute tolérance de tension secteur ± 15% pour maintenir un travail stable.
◆ Système de contrôle MCU, répond immédiatement à tout changement.
◆ Excellente capacité de coupe.
◆ Contrôleur d’arc pilote, peut couper la pièce de grille
◆ Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés sont signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.

1.2 Spécifications C 4 1

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL C41 CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>11 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H395mmxW180mmxD370mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d’approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (CUT)</td>
<td>20 - 40A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>18A</td>
</tr>
<tr>
<td>Courant d’entrée maximum</td>
<td>28.5A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>9.9kVA</td>
</tr>
<tr>
<td>BÂTON (CUT) Sortie dsoudure, 40°C, 10 min.</td>
<td>40A @ 40%, 96V 25A @ 100%, 90V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>330V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
</tbody>
</table>
ÉQUIPEMENT DE SÉRIE DE COUPE

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l’installation, de l’utilisation, des applications, de la maintenance et du service corrects.

1.3 Articles emballés

C41
- TorchePlast 6m S45
- Pince de mise à la terre 200 ampères avec câble 3M
- Cordon d’alimentation 3M
- Tuyau de gaz 3m 8*13.5
- Manuel d’utilisation

1.4 Cycle de service

Le rapport cyclique nominal d’une source d’alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l’exemple suivant. Supposons qu’une source d’alimentation de soudage soit conçue pour fonctionner à un cycle de service de 40%, 40 ampères à 96 volts. Cela signifie qu’il a été conçu et construit pour fournir l’ampérage nominal (40 A) pendant 5 minutes, c’est-à-dire le temps de soudage à l’arc, toutes les 10 minutes (40% de 10 minutes sont 4 minutes). Pendant les 6 autres minutes de la période de 10 minutes, la source d’alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

1.5 Spécifications C71

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL C71 CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>18.8 kg</td>
</tr>
<tr>
<td>Dimensions de la source d’alimentation</td>
<td>H515mmxW224mmxD375mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d’alimentation de l’onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d’alimentation</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d’approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (CUT)</td>
<td>20 - 70A</td>
</tr>
<tr>
<td>Courant d’entrée effectif</td>
<td>10.7 A</td>
</tr>
<tr>
<td>Courant d’entrée maximum</td>
<td>13.8 A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>14.3kVA</td>
</tr>
<tr>
<td>BÂTON (CUT)Sortie dsoudure, 40ºC, 10 min.</td>
<td>70A @ 60%, 108V 54A @ 100%, 101.6V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>330V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l’installation, de l’utilisation, des applications, de la maintenance et du service corrects.

1.6 Articles emballés

C71
- TorchePlast 6m PT80
- Pince de mise à la terre 200 ampères avec câble 3M
- Cordon d’alimentation 3M
- Tuyau de gaz 3m 8*13.5
- Régulateurd’air
- Manuel d’utilisation
1.7 Cycle de service

Le rapport cyclique nominal d'une source d'alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l'exemple suivant. Supposons qu'une source d'alimentation de soudage soit conçue pour fonctionner à un cycle de service de 60%, 70 ampères à 108 volts. Cela signifie qu'il a été conçu et construit pour fournir l'amphéragé nominal pendant 6 minutes, c'est-à-dire le temps de soudage à l'arc, toutes les 10 minutes (60% de 10 minutes sont 6 minutes). Pendant les 4 autres minutes de la période de 10 minutes, la source d'alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

1.8 Spécifications C101

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL C101 CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>27.6 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H545mmxW250mmxH450mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gammme de courant de soudage (CUT)</td>
<td>20 - 100A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>17A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>21,9A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>22,8kVA</td>
</tr>
<tr>
<td>BÂTON (CUT)/Sortie dsoudure, 40°C, 10 min.</td>
<td>100A@60%, 120V, 77.5A@100%, 111V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>330V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
</tbody>
</table>

1.9 Articles emballés

C101
- TorchePlast 6m PT100
- Pince de mise à la terre 300 ampères avec câble 3M
- Cordon d'alimentation 3M
- Manuel d'utilisation

1.10 Cycle de service

Le rapport cyclique nominal d'une source d'alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l'exemple suivant. Supposons qu'une source d'alimentation de soudage soit conçue pour fonctionner à un cycle de service de 60%, 100 ampères à 120 volts. Cela signifie qu'il a été conçu et construit pour fournir l'amphéragé nominal pendant 6 minutes, c'est-à-dire le temps de soudage à l'arc, toutes les 10 minutes (60% de 10 minutes sont 6 minutes). Pendant les 4 autres minutes de la période de 10 minutes, la source d'alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.
Opération

ÉQUIPEMENT DE SÉRIE DE COUPE

2.1 Disposition pour le panneau C41

1. Affichage numérique
 Le compteur numérique est utilisé pour afficher l'intensité prédéfinie (prévisualisation) pour la coupe et le courant de coupe réel.

2. Indicateur de mise sous tension
 L'indicateur POWER ON s'allume lorsque l'interrupteur ON / OFF est en position ON et que la tension d'alimentation correcte est présente.

3. Indicateur de travail
 Allumez l'interrupteur du pistolet de coupe, la tension générée, la lampe allumée.

4. Indicateur de surcharge thermique
 Cette source d'alimentation de soudage est protégée par un thermostat à réarmement automatique. L'indicateur s'allume si le cycle de service de la source d'alimentation a été dépassé. Si l'indicateur de surcharge thermique s'allume, la sortie de la source d'alimentation sera désactivée. Une fois que la source d'alimentation se refroidit, cette lumière s'éteintra et la condition de surchauffe se réinitialisera automatiquement. Notez que l'interrupteur d'alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l'appareil de refroidir suffisamment. N'éteignez pas l'unité en cas de surcharge thermique.

5. Indicateur défectueux de torche de plasma
 Alarme de mauvaise installation de la coupe du pistolet

6. Indicateur de pression d'air défectueux
 Alarme de la pression d'air basse.

7. Contrôle positif
 Le contrôle positif est utilisé pour plus de courant.

8. Negative Kontrolle
 Le contrôle négatif est utilisé pour réduire le courant.

9. Baromètre
 Le baromètre montre la pression d'air actuelle.

10. Terminal de sortie de soudage positif
 La borne de coupe positive est utilisée pour connecter la sortie de coupe de la source d'alimentation à l'accessoire de soudage approprié tel que la pince de masse. Il est essentiel que la fiche mâle soit insérée et tournez fermement pour obtenir une bonne connexion électrique.

11. Connecteur de torche à plasma
 Torche à plasma insérée pour se connecter à la machine. Il est nécessaire de s'assurer que la fiche est correctement et fermement connectée pour maintenir l'alimentation en électricité et en gaz.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne

2.2 Disposition pour le panneau C71

...
1. **Affichage numérique**
Le compteur numérique est utilisé pour afficher l’intensité prédéfinie (prévisualisation) pour la coupe et le courant de coupe réel.

2. **Indicateur de mise sous tension**
L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

3’ **Indicateur de surcharge thermique**
Cette source d’alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s’allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d’alimentation sera désactivée. Une fois que la source d’alimentation se refroidit, cette lumière s’éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

4. **Indicateur de pression d’air / Indicateur défaut de la torche de coupe**
alarme de la mauvaise installation de la torche de coupe et alarme de basse pression d’air.

5. **Indicateur de travail**
Allumez l’interrupteur du pistolet de coupe, la tension générée, la lampe allumée.

6. **Indicateur de coupe de grille**
Appuyez et relâchez le bouton de 8 pour changer le mode de fonctions de coupe sélectionné, le voyant allumé, la fonction est sélectionnée.

7. **Indicateur de coupe normale**
Appuyez et relâchez le bouton de 8 pour changer le mode de fonctions de coupe sélectionné, le voyant allumé, la fonction est sélectionnée.

8. **Bouton de sélection de la fonction de coupe**
Drücken Sie den Knopf und lassen Sie diesen wieder los, um die ausgewählte Funktionsweise zu ändern.

9. **Negative Kontrolle**
Appuyez et relâchez ce bouton pour changer le mode de fonctions de coupe sélectionné.

10. **Contrôlepositif**
Le contrôlepositif est utilisé pour plus de courant.

11. **Terminal de sortie de soudage positif**
La borne de coupe positive est utilisée pour connecter la sortie de coupe de la source d’alimentation à l’accessoire de soudage approprié et la pince de masse. Il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

12. **Connecteur de torche à plasma**
Torche à plasma insérée pour se connecter à la machine. Il est nécessaire de s’assurer que la fiche est correctement et fermement connectée pour maintenir l’alimentation en électricité et en gaz.

AVERTISSEMENT
NE TOUCHEZ PAS le fil d’électrode pendant qu’il est alimenté dans le système. Le fil d’électrode sera au potentiel de tension de soudage.

AVERTISSEMENT
NE TOUCHEZ PAS le fil d’électrode pendant qu’il est alimenté dans le système. Le fil d’électrode sera au potentiel de tension de soudage.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

2.3 Disposition pour le panneau C1 0 1

ÉQUIPEMENT DE SÉRIE DE COUPE

Opération

1. **Baromètre**
Le baromètre montre la pression d’air actuelle.

2. **Affichage numérique**
Le compteur numérique est utilisé pour afficher l’intensité prédéfinie (prévisualisation) pour la coupe et le courant de coupe réel.
2.4 Capacité de coupe en acier (Épaisseur à l'échelle.)

<table>
<thead>
<tr>
<th>Épaisseur de coupe de qualité (500mm / min)</th>
<th>C41</th>
<th>C71</th>
<th>C101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Épaisseur de coupe</td>
<td>10mm</td>
<td>20mm</td>
<td>30mm</td>
</tr>
<tr>
<td>Capacité de coupe maximale</td>
<td>20mm</td>
<td>30mm</td>
<td>50mm</td>
</tr>
</tbody>
</table>

2.5 Instructions d’installation

Pour que l’unité fonctionne correctement, elle doit être correctement installée. Suivez la procédure ci-dessous pour une installation correcte:

1. Lisez attentivement les règles de sécurité dans ce manuel.
2. Vérifiez à la réception de l’unité qu’il n’y a pas de pièces défectueuses ou de pièces endommagées pendant le transport.
3. Attachez le régulateur d’air comme indiqué sur la photo Installation du régulateur d’air uniquement pour C71.
4. Réglez votre appareil dans une zone correctement ventilée et assurez-vous que les fentes d’aération ne sont pas obstruées.
5. Connectez le câble d’alimentation à une prise située le plus près possible de la zone de travail, afin que l’appareil puisse être rapidement éteint en cas d’urgence.
6. Votre machine est équipée d’une prise de 16 ampères, avant utilisation, vérifiez que la terre verte / jaune est connectée à la prise de terre de la prise montée.
7. Assurez-vous que l’interrupteur d’alimentation et tous les fusibles ont une valeur qui ± 15% du courant maximum absorbé par l’unité. Tous les fusibles doivent être de type lent.
8. Toutes les rallonges du câble d’alimentation doivent avoir la même section que le câble d’alimentation. Les fils d’extension, cependant, ne devraient être utilisés que lorsque c’est absolument nécessaire. Il est important de noter que toute extension des câbles principaux ou des câbles de la torche peut affecter les performances de coupe de cet équipement, car la résistance du câble réduit l’entrée de tension, qui est déterminée par la longueur du câble. La longueur des câbles principaux et des câbles de la torche fournie est recommandée.
9. Fixer la pince de terre à la pièce à couper. Si la surface de la pièce à couper est peinte, rouillée ou recouverte de matériau isolant, nettoyer la surface de façon à obtenir un contact satisfaisant entre la pièce et la pince de terre.
10. Assurez-vous que la torche a été assemblée avec les composants appropriés et que la pointe de coupe convient au courant de coupe.
11. Raccorder l’air au régulateur et ajuster le régulateur pour délivrer 5-6 bar 90ltr / min.
13. Appuyez sur la torche de coupe pour obtenir un pilote de la pointe de cuivre, lorsque ce pilote est à la pièce, l’opération de coupe commence.

Opération ÉQUIPEMENT DE SÉRIE DE COUPE

3. **Indicateur de mise sous tension**
 L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

4. **Indicateur de surcharge thermique**
 Cette source d’alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s’allume si le cycle de service de la source d’alimentation a été dépassé. Si l’indicateur de surcharge thermique s’allume, la sortie de la source d’alimentation sera désactivée. Une fois que la source d’alimentation se refroidit, cette lumière s’éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

5. **Indicateur de pression d’air / Indicateur défectueux de la torche de coupe alarme de la mauvaise installation de la torche de coupe et alarme de basse pression d’air.

6. **Indicateur de travail**
 Allumez l’interrupteur du pistolet de coupe, la tension générée, la lampe allumée.

7. **Indicateur de coupe de grille**
 Appuyez et relâchez le bouton de 8 pour changer le mode de fonctions de coupe sélectionné, le voyant allumé, la fonction est sélectionnée.

8. **Indicateur de coupe normale**
 Appuyez et relâchez le bouton de 8 pour changer le mode de fonctions de coupe sélectionné, le voyant allumé, la fonction est sélectionnée.

9. **Bouton de sélection de la fonction de coupe**
 Drücken Sie den Knopf und lassen Sie diesen wieder los, um die ausgewählte Funktionsweise zu ändern.

10. **Contrôle positif**
 Le contrôle positif est utilisé pour plus de courant.

11. **Negative Kontrolle**
 Appuyez et relâchez ce bouton pour changer le mode de fonctions de coupe sélectionné.

12. **Terminal de sortie de soudage positif**
 La borne de coupe positive est utilisée pour connecter la sortie de coupe de la source d’alimentation à l’accessoire de soudage approprié, c’est-à-dire la pince de masse, et la tordue fermement pour obtenir une bonne connexion électrique.

13. **Connecteur de torche à plasma**
 Torche à plasma insérée pour se connecter à la machine. Il est nécessaire de s’assurer que la fiche est correctement et fermement connectée pour maintenir l’alimentation en électricité et en gaz.

MISE EN GARDE

Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.
14. Une fois la coupe terminée, relâchez le bouton de la torche pour éteindre l’arc. Une période de post-écoulement de 45 à 75 secondes (nécessaire pour le refroidissement de la torche) suivra. Ne déconnectez pas l’air tant que cette période de refroidissement n’est pas terminée. Si vous ne le faites pas, vous risquez d’endommager la tête de la torche.

MISE EN GARDE

Ne pointez pas le jet de torche sur des corps étrangers.

MISE EN GARDE

Éviter l’éclairage inutile de l’arc pilote pour éviter une consommation excessive de l’électrode et de la buse.

MISE EN GARDE

Pendant la coupe, la vitesse du mouvement de la torche doit être en accord avec l’épaisseur de la pièce à couper. Une vitesse excessive provoque un retour d’incandescence vers la torche ce qui raccourcit la durée de vie des parties de la torche les plus sujettes à l’usure. L’encrassement métallique sur la buse doit être retiré dès que possible.

Installation et fonctionnement du régulateur d’air

1. Serrez fermement et scellez le trou d’air en cuivre à la borne IN et OUT par un tube en caoutchouc à haute pression.
2. Fixez et scellez le compteur avec le tube en caoutchouc de la face du compteur.
3. Fixez l’étagère de connexion avec la vis comme la position du régulateur.
4. Descendez la vis en plastique et fixez le régulateur sur l’étagère.
5. Tournez la valve d’air, tournez le bouton de réglage de pression, tournez la pression de volume (compteur à l’intérieur indique kg), puis posez le bouton (+ signifie augmenter la pression, - signifie diminuer la pression.)
7. Si l’eau dans la bouteille filtrante de gaz est trop, allumez svp la valve de l’eau pour laisser l’eau s’éteindre.
Dépannage

Avant que les machines de soudage à l’arc soient expédiées de l’usine, elles ont déjà été déboguées avec précision. Donc, il est interdit à quiconque qui n’est pas autorisé par nous d’apporter des modifications à l’équipement!

Le cours d’entretien doit être utilisé avec soin. Si un fil devient flexible ou est mal placé, c’est peut-être un danger potentiel pour l’utilisateur!

Seul le personnel d’entretien professionnel qui est autorisé par nous pourrait réviser l’équipement!

Garantie de couper la puissance de la machine de soudage à l’arc avant d’allumer le contour de l’équipement!

S’il y a un problème et il n’y a pas le personnel d’entretien professionnel autorisé, s’il vous plaît contacter l’agent local ou la succursale! S’il y a quelques problèmes simples de machine à souder de série WSME, vous pouvez consulter le tableau de révision suivant:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allumez la source d'alimentation. Le voyant d'alimentation est allumé, le ventilateur et la vannede contrôle d'air ne fonctionnent pas</td>
<td>Le ventilateur est cassé et le tableau de commande cassé.</td>
<td>Changer le ventilateur et le tableau de commande.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il y a quelque chose dans le ventilateur et le tableau de commande cassé.</td>
<td>Nettoyez-le et changez le tableau de commande.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le condensateur de démarrage du ventilateur est endommagé et le tableau de commande est cassé. Les lignes d’entrée ne sont pas corréllées</td>
<td>Changez le condensateur et le tableau de commande.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer.</td>
</tr>
<tr>
<td>2</td>
<td>Allumez la source d’revisionalimentation, le voyant d’alimentation fonctionne, l’indicateur d’alimentation n’est pas allumé</td>
<td>Le Voyant d’alimentation est endommagé ou la connexion n’est pas bonne</td>
<td>Changer la lumière d’alimentation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer.</td>
</tr>
<tr>
<td>3</td>
<td>Allumez la source d’alimentation, le ventilateur ne fonctionne pas, le voyant d’alimentation n’est pas allumé</td>
<td>La connexion du câble d'alimentation n'est pas bon</td>
<td>Connecter correctement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d'alimentation est cassé</td>
<td>Le réparer ou changer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L’interrupteur de mise sous tension est endommagé</td>
<td>Le changer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La lumière de l'indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
<td>Changé la lumière de l'indicateur d'alimentation ou se référer à la solution dans Nr. 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d’alimentation est cassé</td>
<td>Le changer.</td>
</tr>
<tr>
<td>4</td>
<td>Allumez la source d’alimentation, l’indicateur Torch / Gas est allumé</td>
<td>La coupe du bouclier avec une installation non adaptée</td>
<td>Installez et vissez correctement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La pointe ou l'électrode avec une installation non adaptée</td>
<td>Installez et vissez correctement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La pression du gaz trop faible</td>
<td>Réglez la pression du gaz à 65 psi / 4,5 bars, le baromètre indique jusqu'à 0,4 MPa ou 60 psi.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cla torche de coupe est cassée ou erreur</td>
<td>Vérifier et changer.</td>
</tr>
<tr>
<td>Nr.</td>
<td>Troubles</td>
<td>Raisons</td>
<td>Solution</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Faible sortie de coupe</td>
<td>Réglage incorrect du courant de coupe</td>
<td>Vérifiez et ajustez le courant de coupe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composants défectueux dans la machine</td>
<td>Consultez le revendeur ou le fabricant pour réparer</td>
</tr>
<tr>
<td>12</td>
<td>La torche peut couper mais la qualité est mauvaise</td>
<td>Le courant de coupe est trop faible</td>
<td>Augmentez le courant de coupe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le mouvement de la torche trop rapide</td>
<td>Réduisez la vitesse de coupe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excès d'huile ou d'humidité dans la torche</td>
<td>Ne commencez pas directement à couper avant nettoyer la torche</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manque de pression d'air</td>
<td>Vérifiez la pression d'air et le débit d'air</td>
</tr>
</tbody>
</table>
1.1 Introduction courte

Caractéristiques du TIG T231 T331

Système de contrôle MCU, répond immédiatement à tout changement.

Haute fréquence et haute tension pour l’amorçage de l’arc afin d’assurer le taux de succès de l’arc’d’allumage.

Evitez les arcs électriques à CA avec des moyens spéciaux, même si l’arc se brise, le HF maintiendra l’arc stable.

Pédale contrôle le courant de soudage.

En DC TIG sans fonctionnement HF, si l’électrode en tungstène touche la pièce à souder lors du soudage, le courant tombera en court-circuit pour protéger le tungstène.

Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés ont été signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.

Objectif: onduleur DC TIG / MMA, excellente performance sur acier, acierinoxydable, titane.

Selon le choix des fonctions du panneau avant, les cinq méthodes de soudage suivantes peuvent être réalisées.

DC MMA
DC TIG
DC Pulse TIG

1. Pour DC MMA, la connexion de polarité peut être choisie en fonction des différentes électrodes.

2. Pour DC TIG, DCEP est utilisée normalement (pièce à usiner reliée à la polarité positive, alors que la torche est connectée à la polarité négative); cette connexion a beaucoup de caractères, tels que l’arc de soudure stable, la basse perte de poteau de tungstène, plus de courant de weilding, la soudure étroite et profonde.

3. TIG pulsé par DC a les caractéristiques suivants:

 1) Chauffage par impulsion. Mélange dans la piscine fondue a peu de temps sur l’état de haute température et se figerapidement, ce qui peut réduire la possibilité de produire une fissure à chaud des matériaux avec unesensibilité thermodyne.

 2) La pièce reçoit un champ de chaleur. L’énergie de l’arc est focalisée. Convient pour le soudage de tôles fines et super fines.
1.3 Caractéristiques Volt-ampères

TIG T231 T331 Machine de soudage a une excellente caractéristique de volt-ampère, dont le graphe est représenté comme la figure suivante. La relation entre la tension de charge nominale U_2 classique et le courant de soudage classique I_2 est la suivante:

Lorsque $I_2 \leq 600\text{A}$, $U_2 = 10 + 0.04 I_2$ (V);
Quand $I_2 > 600\text{A}$, $U_2 = 34$ (V) ist.

1.4 Spécifications T231/T331

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL T231</th>
<th>VECTOR DIGITAL T331</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>10.9 kg</td>
<td>19.6 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H395mmxW180mmxD370mm</td>
<td>H515mmxW220mmxD380mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>5 - 200A</td>
<td>30 - 250A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode TIG DC)</td>
<td>5 - 200A</td>
<td>10 - 300A</td>
</tr>
<tr>
<td>Courant d’entrée effectif</td>
<td>32.3A</td>
<td>8.6A</td>
</tr>
<tr>
<td>Courant d’entrée maximum</td>
<td>41.7A</td>
<td>13.7A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>14.4kVA</td>
<td>14.2kVA</td>
</tr>
<tr>
<td>BÂTON (MMA)Sortie de soudure, 40°C, 10 min.</td>
<td>200A @ 60%, 28V</td>
<td>250A @ 40%, 30V</td>
</tr>
<tr>
<td>TIG (GTAW)Sortie de soudure, 40°C, 10 min.</td>
<td>200A @ 60%, 18V</td>
<td>155A @ 100%, 16.2V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
</tbody>
</table>

1.5 Cycle de service

Le rapport cyclique nominal d’une source d’alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l’exemple suivant. Supposons qu’une source d’alimentation de soudage soit conçue pour fonctionner à un cycle de service de 50%, 300 ampères à 22 volts. Cela signifie qu’il a été conçu et construit pour fournir l’amperage nominal (300 A) pendant 5 minutes, c’est-à-dire le temps de soudage à l’arc, toutes les 10 minutes (40% de 10 minutes sont 4 minutes). Pendant les 5 autres minutes de la période de 10 minutes, la source d’alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.
1.6 Articles emballés

T231
- Torche TIG 4M WP26
- Cordon d’alimentation 3M
- Porte-électrode 200 Amp avec câble 3M
- Pince de mise à la terre 200 ampères avec câble 3M
- Tuyau de gaz 3M
- Manuel d’utilisation

T331
- Torche TIG 4M WP18
- Cordon d’alimentation 3M
- Porte-électrode 300 Amp avec câble 3M
- Pince de mise à la terre 300 ampères avec câble 3M
- Tuyau de gaz 3M
- Manuel d’utilisation

2.1 Disposition pour le panneau T231/T331

Equipement de series d’impulsion CC

Opération

1. Indicateur de mise sous tension
 L’indicateur POWER ON s’allume lorsque l’interrupteur ON / OFF est en position ON et que la tension d’alimentation correcte est présente.

2. Bouton de sélection de processus
 Le contrôle de sélection de processus est utilisé pour sélectionner le mode de soudage souhaité. Deux modes sont disponibles, GTAW (TIG) et MMA (Stick).

3. Bouton de contrôle du mode de déclenchement (Que mode HF TIG/LIFT TIG)
 Le contrôle du mode de déclenchement est utilisé pour communter la fonctionnalité du déclencheur de la torche entre 2T et 4T.

 Mode Normal 2T, dans ce mode, le déclencheur de la torche doit rester enfoncé pour que la sortie de soudage soit active.

 Appuyez sur la gâchette de la torche et maintenez-la enfoncée pour activer la source d’alimentation (soudure). Relâchez la gâchette de la torche pour arrêter le soudage.

 Mode de verrouillage 4T, ce mode de soudage est principalement utilisé pour les longs cycles de soudage afin de réduire la fatigue de l’opérateur. Dans ce mode, l’opérateur peut appuyer et relâcher le déclencheur de la torche et la sortie restera active. Pour désactiver la source d’alimentation, le déclencheur de la torche doit à nouveau être enfoncé et relâché, ce qui évite à l’opérateur de devoir maintenir le déclencheur de la torche active.

 Remarque: lorsque vous travaillez en mode GTAW (modes HF et LIFT TIG), la source d’alimentation reste active jusqu’à ce que le temps de descente sélectionné soit écoulé.
4. Bouton d’impulsion
Appuyez sur le bouton PULSE pour activer et désactiver le mode d’impulsion.

<table>
<thead>
<tr>
<th>Opération</th>
<th>Equipement de série d’impulsion CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Bouton d’impulsion</td>
<td>Equipement de série d’impulsion CC</td>
</tr>
<tr>
<td>Appuyez sur le bouton PULSE pour activer et désactiver le mode d’impulsion</td>
<td>Opération</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIG pulsé conventionnel</th>
<th>TIG pulsé à grande vitesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>De pointe AMPS</td>
<td>De pointe AMPS</td>
</tr>
<tr>
<td>Contexte AMPS (% du pic)</td>
<td>Contexte AMPS (% du pic)</td>
</tr>
<tr>
<td>Cycle d’impulsion</td>
<td>Cycle d’impulsion</td>
</tr>
</tbody>
</table>

Typiquement de 1 à 10 PPS. Fournit un effet de chauffage et de refroidissement sur la flaque de soudure et peut réduire la distorsion en abaissant l’intensité moyenne. Cet effet de chauffage et de refroidissement produit également un motif d’ondulation distinct dans le cordon de soudure. La relation entre la fréquence d’impulsion et la vitesse de déplacement détermine la distance entre les ondulations. La pulsation lente peut également être coordonnée avec l’ajout de métal d’apport et augmenter le contrôle global de la flaque de soudure.

5. Negative Kontrolle
Le bouton Négatif est utilisé pour moins sélectionner dans la séquence de programmation.

Contrôle positif
Le bouton positif est utilisé pour sélectionner plus dans la séquence de programmation.

Sélection du bouton de fonction
Ce bouton peut sélectionner différents paramètres de programmation.

6. Ampèremètre Numérique / Paramètre mètre
L’ampèremètre numérique est utilisé pour afficher le courant de sortie réel de la source d’alimentation. Il est également utilisé pour afficher les paramètres en mode de programmation. En fonction du paramètre de programmation sélectionné, l’indicateur d’état adjacente à l’ampèremètre s’allume pour indiquer les unités du paramètre de programmation. Lors du soudage, l’ampèremètre affiche le courant de soudage réel.

7. Force de l’arc / démarrage à chaud / démarrage à chaud actuel
Définir des plages
Force de l’arc: 1-100 AMP
Démarrage à chaud: 0,1-0,5 S
Démarrage à chaud actuel: 1-100 AMP
Changez le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer le temps jusqu’à la force de l’arc à partir de l’affichage numérique.

Equipement de série d’impulsion CC

<table>
<thead>
<tr>
<th>Opération</th>
<th>Equipement de série d’impulsion CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8° JOB et SAVE</td>
<td>Equipement de série d’impulsion CC</td>
</tr>
<tr>
<td>Vous pouvez appuyer sur JOB pour sélectionner les enregistrements de mémoire que vous avez sauvegardés par 1-9. Pour le nouveau réglage des ampères actuels, il suffit d’appuyer sur SAVE.</td>
<td>Opération</td>
</tr>
</tbody>
</table>

| **9. Terminal de soudage positif** | **Opération** |
| **Terminal de soudage positif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.** | **Opération** |

| **10. Terminal de soudage négatif** | **Opération** |
| **Terminal de soudage négatif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.** | **Opération** |

| **11. Sortie de gaz de protection** | **Opération** |
| **La sortie de gaz de protection située sur le panneau avant est une connexion rapide d’une torche TIG appropriée.** | **Opération** |

| **12. Prise de contrôle à broche** | **Opération** |
| **Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d’alimentation de soudage. Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d’une montre.** | **Opération** |

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

2.2 Panneau de contrôle

1. Pré-flux de gaz	**2.2 Panneau de contrôle**
Plage de réglage absolu 0.1s à 20S	**2.2 Panneau de contrôle**
Ce paramètre fonctionne uniquement en mode TIG et sert à fournir du gaz à la zone de soudage avant de frapper l’arc, une fois que l’interrupteur de déclenchement de la torche a été pressé. Ce contrôle est utilisé pour réduire considérablement la porosité de la soudure au début d’une soudure.	**2.2 Panneau de contrôle**
2. Courant initial
 T231: Plage de réglage du courant principal 5AMP à 200AMP
 T331: Plage de réglage du courant principal 10AMP à 300AMP

Ce paramètre fonctionne uniquement dans les modes TIG (4T) et sert à définir le courant de démarrage pour TIG. Le courant de démarrage reste allumé jusqu'à ce que l'interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.

Remarque: Le courant initial maximal disponible sera limité à la valeur de consigne du courant de base.

3. Up Slope
 Plage de réglage: 0.1S-10S

Ce paramètre fonctionne uniquement en mode TIG (2T et 4T) et sert à régler le temps nécessaire pour que le courant de soudage augmente, après que le commutateur de déclenchement de la torche a été pressé puis relâché, du courant initial au courant élevé ou de base.

4. Courant de pointe
 Définir des plages
 T231: 5-200A (DC TIG et AC HF TIG), 5-200A (mode Stick)
 T331: 10-300A (DC TIG et AC HF TIG), 10-300A (mode Stick)

Ce paramètre définit le courant TIG WELD. Ce paramètre définit également le courant de soudage STICK.

5. Courant de base
 Définir des plages
 T231: 5AMP à 200AMP (mode TIG DC), 5AMP à 200AMP (mode TIG AC HF)
 T331: 10AMP à 300AMP (mode TIG DC), 10AMP à 300AMP (mode TIG AC HF)

Courant secondaire (TIG) / courant de pause d’impulsion.

6. Largeur d’impulsion
 Plage de réglage 10%-90%

Ce paramètre définit le pourcentage à temps de la FREQUENCE D’IMPULSIONS pour un courant de soudage élevé lorsque l’IMPULSION est activée.

7. Fréquence d’impulsion
 Plage de réglage 1HZ -200HZ

Ce paramètre définit la FREQUENCE D’IMPULSIONS lorsque l’IMPULSION est activée.

8. Pente vers le bas
 Plage de réglage 0,1-10S

Ce paramètre fonctionne uniquement dans les modes TIG et sert à régler le temps de descente du courant de soudage, après que le commutateur de déclenchement de la torche a été enfoncé pour mettre fin au courant. Ce contrôle est utilisé pour éliminer le cratère qui peut se former à la fin d’une soudure.

9. Courant de fin
 T231: Plage de réglage 5A-200A
 T331: Plage de réglage 10A-300A

Ce paramètre fonctionne uniquement en mode TIG (4T) et sert à régler le courant de fin pour TIG. Le courant de fin reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.

Remarque: Le courant de cratère maximal disponible sera limité à la valeur de consigne du courant de base.

10. Post-flux
 Plage de réglage 1.0-20S

Ce paramètre fonctionne uniquement en mode TIG et sert à ajuster le temps d’écoulement du gaz après l’extinction de l’arc, ce contrôle est utilisé pour réduire considérablement l’oxydation de l’électrode de tungstène.

2.3 Configuration pour le soudage STICK (MMA)

Pour l’électrode alcaline, connectez le porte-électrode au point de soudage positif et raccordez le fil de travail à la borne de soudage négative, tandis que pour l’électrode acide, connectez le porte-électrode au point de soudage négatif et connectez le fil de travail au terminal de soudage positif. En cas de doute, consultez le fabricant de l’électrode. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique. Sélectionnez le mode STICK avec le contrôle de sélection de processus.

AVERTISSEMENT
Avant de raccorder la pince de travail à la pièce et d’insérer l’électrode dans le porte-électrode, assurez-vous que le secteur d’alimentation est coupée.

MISE EN GARDE
Retirez tout matériau d’emballage avant l’utilisation. Ne bloquez pas les ouvertures d’aération à l’avant ou à l’arrière de la source d’alimentation de soudage.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.
2.4 Mise en place pour le soudage LIFT TIG (GTAW)

AVERTISSEMENT
Avant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés et recommandés.

REMARQUE

La configuration suivante est connue sous le nom de Polarité Droite ou élecrode CC positive. Cela est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l'acier et l'acier inoxydable.

1. Mettez l'interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.
2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
3. Connectez la conduite de gaz / tuyau à la source de gaz de protection appropriée.
4. Ouvrez lentement la valve du cylindre d'argon en position complètement ouverte.
5. Connectez la pince de fil de travail à votre pièce de travail.
6. Le tungstène doit être broyé à un point émoussé (similaire à un crayon) afin d'obtenir des résultats de soudage optimaux. Voir l'illustration. Il est essentiel de meuler l'électrode en tungstène dans le sens de rotation de la meule. Broyer à un angle de 30 degrés et jamais à un point pointu.
7. Installez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.
8. Serrez le capuchon arrière.
10. Réglez le processus de soudage à LIFT TIG.
11. Réglez le bouton de contrôle du courant de soudage à l'intensité désirée.
12. Vous êtes maintenant prêt à commencer l'alimentation électrique de soudage de LIFT TIG.

2.5 Environnement d'exploitation

- La hauteur au-dessus du niveau de la mer est inférieure à 1000m.
- Plage de température de fonctionnement: -10°C ~ +40°C.
- L'humidité relative est inférieure à 90% (20 °C).
- Positionnez de préférence la machine sous certains angles au-dessus du niveau du sol, l'angle maximum ne doit pas dépasser 15°.
- La teneur en poussière, acide, gaz corrosif dans l'air ambiant ou la substance ne peut pas dépasser la norme normale.
- Veillez à ce qu'il y ait une ventilation suffisante pendant le soudage. Il y a au moins 30 cm de liberté entre la machine et le mur.

2.6 Avis d'opération

- Lisez attentivement les instructions de sécurité et le chapitre 1 avant d'essayer d'utiliser cet équipement.
- Connectez le fil de terre à la machine directement.
- En cas de fermeture de l'interrupteur d'alimentation, une tension à vide peut être exportée. Ne touchez pas la sortie d'électrode avec une partie de votre corps.
- Avant l'opération, aucune personne concernée ne doit être laissée, Ne pas regarder l'arc dans les yeux sans protégés.
- Assurez une bonne ventilation de la machine pour améliorer le taux de service.
- Éteignez le moteur lorsque l'opération est terminée pour économiser la source d'énergie.
- Lorsque l'interrupteur d'alimentation s'éteint de manière protectrice en raison d'une défaillance. Ne le redémarrez pas tant que le problème n'est pas résolu. Sinon, l'étendue du problème sera étendue.
Dépannage

3.1 Dépannage

Avant que les machines de soudage à l'arc soient expédiées de l'usine, elles ont déjà été déboguées avec précision. Donc, il est interdit à quiconque qui n'est pas autorisé par nous d'apporter des modifications à l'équipement!

Le cours d'entretien doit être utilisé avec soin. Si un fil devient flexible ou est mal placé, c'est peut-être un danger potentiel pour l'utilisateur!

Le personnel d'entretien professionnel qui est autorisé par nous pourrait réviser le machine!

Garantie de couper l'entretien de la machine de soudage à l'arc avant d'activer le contour de l'équipement!

Si'il y a un problème et il n'y a pas le personnel d'entretien professionnel autorisé, s'il vous plaît contacter l'agent local ou la succursale!

Bei simples Problemen der T – Serien, können Sie die folgende Wartungs- und Fehler-behebungstablet nutzen:

Troubles

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Le numéro de l'affichage n'est pas intact</td>
<td>Le panneau d'affichage est endommagé</td>
<td>Changer le panneau d'affichage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tube numérique est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage n'est pas connecté avec les deux sorties si le soudeur</td>
<td>Connecter le câble de soudage à la sortie du soudeur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage est endommagé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td>7</td>
<td>L'arc ne peut pas être allumé (TIG), il y a une étincelle sur le tableau d'allumage HF</td>
<td>Le câble de terre connecté de manière instable</td>
<td>Consulter le revendeur ou le fabricant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage est trop long</td>
<td>Utiliser un câble de soudage approprié</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il y a de l'huile ou de la poussière sur la pièce</td>
<td>Vérifier et l'effacer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La distance entre l'électrode de tungstène et la pièce est trop long</td>
<td>Réduire la distance (environ 3mm, moins de 5mm)</td>
</tr>
<tr>
<td>8</td>
<td>L'arc ne peut pas être allumé (TIG), il n'y a pas d'étincelle sur le tableau d'allumage HF</td>
<td>Il n'y a pas de flux d'Argon ou la connexion est mauvaise</td>
<td>Vérifier et reconnecter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d'entrée n'est pas stable</td>
<td>Vérifier l'alimentation</td>
</tr>
<tr>
<td>9</td>
<td>Allume la source d'alimentation, tout est normal, mais pas d'allumage HF</td>
<td>Le tableau d'allumage HF ne fonctionne pas</td>
<td>Réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La distance entre le déchargeur est trop courte ou trop longe</td>
<td>Réglé la distance (environ 0.8mm)</td>
</tr>
<tr>
<td>10</td>
<td>Pas de flux de gaz argon ou le tube d'air se connecter pas bon</td>
<td>Le dysfonctionnement de l'interrupteur du pistolet de soudage</td>
<td>Vérifier l'interrupteur de la torche de soudage, le câble de commande et la douille aérodynamique.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage n'est pas connecté avec les deux sorties si le soudeur</td>
<td>Connecter le câble de soudage à la sortie du soudeur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble de soudage est endommagé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td>11</td>
<td>Le gaz circule toujours</td>
<td>Le cylindre de gaz est trop long</td>
<td>Ouvrir ou changer le cylindre de gaz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La soupape électromagnétique est endommagée</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le tube d'air est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pression trop élevée ou le régulateur d'air est cassé</td>
<td>Vérifier le gaz</td>
</tr>
<tr>
<td>12</td>
<td>Le courant de soudage ne peut pas être ajusté</td>
<td>Si l'indicateur de surchauffe est allumé</td>
<td>Vérifier si l'électrode colle à la pièce que la fonction anti-adhérence est activée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le circuit principal est cassé</td>
<td>Séparer l'électrode et la pièce à travailler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La machine est cassée</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Couper l'alimentation en changeant la torche</td>
<td></td>
</tr>
</tbody>
</table>

Pas de sortie de tension à vide (MMA):

Si l'indicateur de surchauffe est allumé

Le circuit principal est cassé

La machine est cassée

Attendre quelques minutes, la machine peut fonctionner normalement

Vérifier et réparer

Consulter le revendeur ou le fabricant

Eqipment de series d’impulsion CC
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Le courant de soudage affiché n'est pas conforme à la valeur réelle</td>
<td>La valeur minimale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre Imin sur le tableau de commande</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La valeur maximale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre max sur le tableau de commande</td>
</tr>
<tr>
<td>14</td>
<td>La pénétration de la piscine fondue ne suffit pas</td>
<td>Le courant de soudage est réglé trop bas</td>
<td>Augmenter le courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L’arc est trop long dans le processus de soudage</td>
<td>Ajuster la distance de la torche à la pièce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d’alimentation ou le câble de soudage est trop long</td>
<td>Utiliser la longueur appropriée du fabricant</td>
</tr>
<tr>
<td>15</td>
<td>L’électrode Tig fond lors du soudage</td>
<td>La torche Tig est connectée à la borne positive</td>
<td>Connecter la torche tig à la borne négative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Réduire le courant de soudage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre les surintensités, le courant dans le circuit principal est hors de contrôle</td>
<td>Vérifier et réparer le circuit principal et la carte d'entraînement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d'entrée est trop faible</td>
<td>Vérifier l'alimentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td>16</td>
<td>Le voyant de surcharge thermique est allumé</td>
<td>Protection contre la surchauffe, trop de courant de soudage</td>
<td>Réduire le courant de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre la surchauffe, ravail trop de temps</td>
<td>Réduire le temps de soudage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection contre les surintensités, le courant dans le circuit principal est hors de contrôle</td>
<td>Vérifier et réparer le circuit principal et la carte d'entraînement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La tension d'entrée est trop faible</td>
<td>Vérifier l'alimentation</td>
</tr>
<tr>
<td>17</td>
<td>Flutters d'arc pendant le soudage Tig</td>
<td>L’électrode de tungstène est trop grande pour le courant de soudage</td>
<td>Sélectionner la bonne taille d'électrode de tungstène</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vérifier la position de la pince de terre sur la pièce à travailler</td>
<td>Ajuster la position de la pince de terre</td>
</tr>
</tbody>
</table>
ÉQUIPEMENT SÉRIE MULTIFONCTION

1.1 Introduction Courte

La machine de soudage O241, O251 adopte la dernière technologie de modulation de largeur d’impulsion (PWM) et le module d’alimentation à transistor bipolaire isolé (IGBT), qui peut changer la fréquence de travail à moyenne fréquence. transformateur à moyenne fréquence de l'armoire, ainsi, il est caractérisé avec portable, smallsize, poids léger, faible consommation et etc.

Les paramètres sur le panneau avant peuvent être ajustés continuellement et sans à-coup, tels que courant de démarrage, courant d'arc de cratère, courant de soudage, courant de base, rapport de service, temps de pente ascendante, temps descendant, post-gaz, fréquence d’impulsion, fréquence CA, équilibre, démarrage à chaud, force d’arc etc. Lors du soudage, il faut une haute fréquence et une haute tension pour amorcer l’arc pour assurer le taux de succès de l'arc d'allumage.

Caractéristiques du O241, O251:

◆ Système de contrôle MCU, répond immédiatement à tout changement.
◆ Haute fréquence et haute tension pour l’amorçage de l’arcafind’assurer le taux de succès de l’arc d’allumage.
◆ Évitez les arcs électriques à CA avec des moyens spéciaux, même si l’arc se brise, le HF maintiendra l’arc stable.
◆ Pédale contrôle le courant de soudage.
◆ En DC TIG sans fonctionnement HF, si l’électrode en tungstène touche la pièce à souder lors du soudage, le courant tombera en court-circuit pour protéger le tungstène.
◆ Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés ont été signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.
◆ Double objectif: onduleur AC TIG / MMA et onduleur DC TIG / MMA, excellente performance sur alliage AL, acier au carbone, acierinoxydable, titane

1.2 Principe de fonctionnement

Le principe de fonctionnement de machines à soudage de O241,O251 monophasée 230V est représenté par la figure suivante. La fréquence de travail AC est rectifiée en courant continu DC (environ 312V), puis convertie en courant alternatif AC moyenne fréquence (environ 20-40KHz) par le dispositif onduleur (module IGBT), après réduction de la tension par transformateur moyen (transformateur principal) et rectification par le redresseur de fréquence moyenne (diodes de rétablissement rapide), puis est sortie DC ou AC en sélectionnant le module IGBT. Le circuit adopte la technologie de contrôle de rétroaction actuelle pour assurer la sortie de courant de manière stable. Pendant ce temps, le paramètre de courant de soudage peut être ajusté en continu et sans à-coup pour répondre aux exigences des métiers de soudage.

1.3 Caractéristique Volt-Ampère

O241,O251 Machine de soudage a une excellente caractéristique de volt-ampère, dont le graphe est représenté comme la figure suivante. La relation entre la tension de charge nominale U_2 classique et le courant de soudage classique I_2 est la suivante:

TIG Lorsque $I_2 \leq 600A$, $U_2 = 10 + 0.04 I_2 (V)$;
Quand $I_2 > 600A$, $U_2 = 34 (V)$ ist.

MMA Lorsque $I_2 \leq 600A$, $U_2 = 20 + 0.04 I_2 (V)$;
Quand $I_2 > 600A$, $U_2 = 44 (V)$ ist.

CUT Lorsque $I_2 \leq 600A$, $U_2 = 80 + 0.04 I_2 (V)$;
1.4 Spécifications O241 und O251

<table>
<thead>
<tr>
<th>Description</th>
<th>VECTOR DIGITAL O241</th>
<th>VECTOR DIGITAL O251</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>20.9 kg</td>
<td>31 kg</td>
</tr>
<tr>
<td>Dimensions de la source d'alimentation</td>
<td>H935mmxW180mmxD370mm</td>
<td>H540mmxW270mmxD450mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur</td>
<td>Source d'alimentation de l'onduleur</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode DC STICK)</td>
<td>10 - 170A</td>
<td>10 - 200A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode TIG DC)</td>
<td>10 - 170A</td>
<td>10 - 200A</td>
</tr>
<tr>
<td>Gamme de courant de soudage (mode CUT DC)</td>
<td>15 - 40A</td>
<td>20 - 40A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>26.2A</td>
<td>29.5A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>33.9A</td>
<td>41.7A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>11.7kVA</td>
<td>14.4kVA</td>
</tr>
<tr>
<td>BÂTON (MMA) Sortie de soudure, 40°C, 10 min.</td>
<td>170A @ 60%, 26.8V</td>
<td>200A @ 50%, 28V</td>
</tr>
<tr>
<td></td>
<td>132A @ 100%, 25.3V</td>
<td>141A @ 100%, 25.6V</td>
</tr>
<tr>
<td>TIG (GTAW) Sortie de soudure, 40°C, 10 min.</td>
<td>170A @ 60%, 16.8V</td>
<td>200A @ 50%, 18V</td>
</tr>
<tr>
<td></td>
<td>124A @ 100%, 15V</td>
<td>141A @ 100%, 15.6V</td>
</tr>
<tr>
<td>(CUT) Sortie de soudure, 40°C, 10 min.</td>
<td>40A @ 60%, 96V</td>
<td>40A @ 60%, 96V</td>
</tr>
<tr>
<td></td>
<td>31A @ 100%, 92.4V</td>
<td>31A @ 100%, 92.4V</td>
</tr>
<tr>
<td>Tension en circuit ouvert (MMA/TIG)</td>
<td>66V DC</td>
<td>66V DC</td>
</tr>
<tr>
<td>Tension en circuit ouvert (CUT)</td>
<td>236V DC</td>
<td>270V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
</tbody>
</table>

REMARQUE

Note 1: Le courant d'entrée effectif doit être utilisé pour déterminer la taille du câble et les exigences d'alimentation.

Note 2: Exigences du générateur au cycle de rendement maximal.

Note 3: Des fusibles de démarrage du moteur ou des disjoncteurs thermiques sont recommandés pour cette application. Vérifiez les exigences locales pour votre situation à cet égard.

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.
Opération

1.6 Articles emballés

O241/O251
- Torches TIG 4M WP26
- Torche à plasma 4.5m AG60
- Cordon d'alimentation 3M
- Porte-électrode 200 Amp avec câble 3M
- Pince de mise à la terre 200 ampères avec câble 3M
- Tuyau de gaz 3.5M
- Manuel d'utilisation
- Régulateur d'air

2.1 Disposition pour le panneau O241

ÉQUIPEMENT SÉRIE MULTIFONCTION

1. Ampèremètre Numérique / Paramètre mètre
 L’ampèremètre numérique est utilisé pour afficher le courant de sortie réel de la source d'alimentation. Il est également utilisé pour afficher les paramètres en mode de programmation. En fonction du paramètre de programmation sélectionné, l'indicateur d'état adjacent à l'ampèremètre s'allume pour indiquer les unités du paramètre de programmation. Lors du soudage, l'ampèremètre affiche le courant de soudage réel.

2. **Indicateur actuel**
 Lors du réglage du programme dans le courant de crête, le courant de base, le courant de fin et le courant rem, cet indicateur de courant sera allumé.

3. **Indicateur de pourcentage (%)**
 Pindicateur de pourcentage, lors du réglage du programme en cycle d’impulsions, cet indicateur sera allumé.

4. **Indicateur de mise sous tension**
 L'indicateur POWER ON s'allume lorsque l'interrupteur ON / OFF est en position ON et que la tension d'alimentation correcte est présente.

5. **Indicateur de surcharge thermique**
 Cette source d'alimentation de soudage est protégée par un thermostat à réarmement automatique. L'indicateur s'allume si le cycle de service de la source d'alimentation a été dépassé. Si l'indicateur de surcharge thermique s'allume, la sortie de la source d'alimentation sera désactivée. Une fois que la source d'alimentation se refroidit, cette lumière s'éteindra et la condition de surchauffe se réinitialisera automatiquement. Notez que l'interrupteur d'alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l'appareil de refroidir suffisamment. N'éteignez pas l'unité en cas de surcharge thermique.

6. **Indicateur (s) de temps**
 Indicateur de temps, lors du réglage du programme dans le pré-écoulement du gaz, la pente ascendante, la pente descendante et le post-écoulement du gaz, cet indicateur s'allumera.

7. **Indicateur de fréquence (Hz)**
 Indicateur de fréquence, lorsque le programme de réglage en fréquence d’impulsion, cet indicateur sera allumé.

8. **Indicateurs de paramètres de la Programmation**
 Ces voyants s'allumeront lors de la programmation.

9. **Force de l’arc / démarrage à chaud / démarrage à chaud actuel**
 Définir des plages
 Force de l’arc: 1-100AMP Démarrage à chaud: 0,1-0,5S Démarrage à chaud actuel: 1-100 AMP
 Changez le mode de fonctions de soudage sélectionné du courant de soudage au démarrage à chaud pour démarrer le temps jusqu’à la force de l’arc à partir de l’affichage numérique.

10. **EMPLOI**
 Vous pouvez appuyer sur JOB pour sélectionner les enregistrements de mémoire que vous avez sauvégardés de 1-

11. **ENREGISTRER**
 La fonction de stockage de soudage et les paramètres, peut stocker 1-9 groupes.
Opération

12. Bouton de contrôle du mode de déclenchement (Que mode HF TIG/LIFT TIG)
Le contrôle du mode de déclenchement est utilisé pour commuter la fonctionnalité du déclencheur de la torche entre 2T et 4T.
Mode Normal 2T, dans ce mode, le déclencheur de la torche doit rester enfoncé pour que la sortie de soudage soit active.
Appuyez sur la gâchette de la torche et maintenez-la enfoncée pour activer la source d'alimentation (soudure). Relâchez la gâchette de la torche pour arrêter le soudage.

Mode de verrouillage 4T, ce mode de soudage est principalement utilisé pour les longs cycles de soudage afin de réduire la fatigue de l'opérateur. Dans ce mode, l'opérateur peut appuyer et relâcher le déclencheur de la torche et la sortie restera active. Pour désactiver la source d'alimentation, le déclencheur de la torche doit à nouveau être enfoncé et relâché, ce qui évite à l'opérateur de devoir maintenir le déclencheur de la torche.
Remarque: lorsque vous travaillez en mode GTAW (modes HF et LIFT TIG), la source d'alimentation reste active jusqu'à ce que le temps de descente sélectionné soit écoulé.

15. Negative Kontrolle
Le bouton Négatif est utilisé pour moins sélectionner dans la séquence de programmation.

16. Contrôle positif
Le bouton positif est utilisé pour sélectionner plus dans la séquence de programmation.

17. Sélection du bouton de fonction
Ce bouton peut sélectionner différents paramètres de programmation du n° 10.

18. Terminal de soudage positif
Terminal de soudage positif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baguelette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

19. Terminal de soudage négatif
Terminal de soudage négatif. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baguelette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique.

20. Prise de contrôle à broche
Le réceptacle à 5 broches est utilisé pour connecter un interrupteur à déclenchement ou une télécommande au circuit de source d’alimentation de soudage: Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d’une montre.
21. Sortie de gaz de protection
La sortie de gaz de protection située sur le panneau avant est une connexion rapide d’une torche TIG appropriée.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

2.2 Panneau de contrôle

1. Pré-flux de gaz
 Plage de réglage absolu 0.1s à 5S
 Ce paramètre fonctionne uniquement en mode TIG et sert à fournir du gaz à la zone de soudage avant de frapper l’arc, une fois que l’interrupteur de déclenchement de la torche a été pressé. Ce contrôle est utilisé pour réduire considérablement la porosité de la soudure au début d’une soudure.

2. Courant initial
 Plage de réglage du courant principal 10AMP à 170AMP
 Ce paramètre fonctionne uniquement dans les modes TIG (4T) et sert à définir le courant de démarrage pour TIG. Le courant de démarrage reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
 Remarque: Le courant initial maximal disponible sera limité à la valeur de consigne du courant de base.

3. Up Slope
 Plage de réglage: 0.1S-10S (-incréments de 0.1S)
 Ce paramètre fonctionne uniquement en mode TIG (2T et 4T) et sert à régler le temps nécessaire pour que le courant de soudage augmente, après que le commutateur de déclenchement de la torche a été pressé puis relâché, du courant initial au courant élevé ou de base.

4. Courant de pointe
 Définir des plages
 O241: 10-170A (DC TIG et AC HF TIG), 10-170A (mode Stick)
 Ce paramètre définit le courant TIG WELD. Ce paramètre définit également le courant de soudage STICK.

5. Courant de base
 Définir des plages
 O241: 10AMP à 170AMP (mode TIG DC), 10AMP à 170AMP (mode TIG AC HF)
 Courant secondaire (TIG) / courant de pause d’impulsion.

6. Pente vers le bas
 Plage de réglage 0,1-10S
 Ce paramètre fonctionne uniquement dans les modes TIG et sert à régler le temps de descente du courant de soudage, après que le commutateur de déclenchement de la torche a été enfoncé pour mettre fin au courant. Ce contrôle est utilisé pour éliminer le cratère qui peut se former à la fin d’une soudure.

7. Courant de fin
 Plage de réglage 10A-170A
 Ce paramètre fonctionne uniquement en mode TIG (4T) et sert à régler le courant de fin pour TIG. Le courant de fin reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
 Remarque: Le courant de cratère maximal disponible sera limité à la valeur de consigne du courant de base.

8. Post-flux
 Plage de réglage 1.0-10S
 Ce paramètre fonctionne uniquement en mode TIG et sert à ajuster le temps d’écoulement du gaz après l’extinction de l’arc. Ce contrôle est utilisé pour réduire considérablement l’oxydation de l’électrode de tungstène.

9. Télécommande
 Le système indépendamment identifie la télécommande, et lorsque le voyant est allumé, le courant de soudage peut être ajusté à distance (pied ou pistolet de soudage).

10. Largeur d’impulsion
 Plage de réglage 10%-90%
 Ce paramètre définit le pourcentage à temps de la FREQUENCE D’IMPULSIONS pour un courant de soudage élevé lorsque l’IMPULSION est activée.

11. Fréquence d’impulsion
 Plage de réglage 1HZ-200HZ
 Ce paramètre définit la FREQUENCE D’IMPULSIONS lorsque l’IMPULSION est activée.
Opération

2.3 Disposition pour le panneau O251

1. Bouton de réinitialisation (Bouton RESET)
 Lorsque le logiciel a un problème, veuillez déclencher le bouton RESET.

2. Bouton d’impulsion
 Appuyez sur le bouton PULSE pour activer et désactiver le mode d’impulsion

ÉQUIPEMENT SÉRIE MULTIFONCTION

Typiquement de 1 à 10 PPS. Fournit un effet de chauffage et de refroidissement sur la flaque de soudure et peut réduire la distorsion en abaissant l’intensité moyenne. Cet effet de chauffage et de refroidissement produit également un motif d’ondulation distinct dans le cordon de soudure. La relation entre la fréquence d’impulsion et la vitesse de déplacement détermine la distance entre les onduations. La pulsation lente peut également être coordonnée avec l’ajout de métal d’apport et augmenter le contrôle global de la flaque de soudure.

Au-delà de 40 PPS, le TIG pulsé devient plus audible que visible, provoquant une agitation accrue des flacons pour une meilleure microstructure soudée.

L’impulsion du courant de soudage à haute vitesse - entre un pic élevé et un ampérage de fond faible - peut également resserrer et focaliser l’arc. Ceci entraîne une stabilité maximale de l’arc, une pénétration accrue et des vitesses de déplacement accrues (plage commune: 100-500 PPS).

Les effets d’accentuation d’arc des impulsions à grande vitesse sont étendus à de nouvelles dimensions. La capacité à pulser à 5 000 PPS améliore encore la stabilité de l’arc et le potentiel de concentration, ce qui est extrêmement bénéfique pour l’automatisation lorsque des vitesses de déplacement maximales sont requises.

3. Bouton de contrôle du mode de déclenchement (Que mode HF TIG/LIFT TIG)
 Le contrôle du mode de déclenchement est utilisé pour commuter la fonctionnalité du déclencheur de la torche entre 2T et 4T.
 Mode Normal 2T, dans ce mode, le déclencheur de la torche doit rester enfonce pour que la sortie de soudage soit active.
 Appuyez sur la gâchette de la torche et maintenez-la enfoncee pour activer la source d’alimentation (soudure). Relâchez la gâchette de la torche pour arrêter le soudage.

Mode de verrouillage 4T, ce mode de soudage est principalement utilisé pour les longs cycles de soudage afin de réduire la fatigue de l’opérateur. Dans ce mode, l’opérateur peut appuyer et relâcher le déclencheur de la torche et la sortie restera active. Pour désactiver la source d’alimentation, le déclencheur de la torche doit à nouveau être enfonce et relâché, ce qui évite à l’opérateur de devoir maintenir le déclencheur de la torche.
Indicateur de mise sous tension

L’indicateur POWER ON s’allume lorsque l'interrupteur ON / OFF est en position ON et que la tension d'alimentation correcte est présente.

Remarque: lorsque vous travaillez en mode GTAW (modes HF et LIFT TIG), la source d'alimentation reste active jusqu'à ce que le temps de descente sélectionné soit écoulé.

4. Bouton de sélection de processus
Le contrôle de sélection de processus est utilisé pour sélectionner le mode de soudage souhaité. Deux modèles sont disponibles, GTAW (TIG), MMA (Stick) et CUT.

5. Ampèremètre numérique
L’ampèremètre numérique est utilisé pour afficher à la fois le courant de sortie préréglé et le courant de sortie réel de la source d'alimentation.

En dehors des opérations de soudage, l’ampèremètre affiche une valeur d’intensité prédéfinie (prévisualisation). Cette valeur peut être ajustée en faisant varier le contrôle multifonction lorsque le voyant de paramétrage de programmation affiche BASE CURRENT.

6. Voltmètre numérique / paramètremètre
Voltmètre numérique est utilisé pour afficher la tension de sortie réelle de la source d'alimentation. Il est également utilisé pour afficher les paramètres en mode de programmation.

Enfonction du paramètre de programmation sélectionné, l’indicateur d’état adjacent au Voltmètre s’allume pour indiquer les unités du paramètre de programmation. Pendant le soudage, le voltmètre affiche la tension de soudage réelle.

7° Indicateur de surcharge thermique
Cette source d'alimentation de soudage est protégée par un thermostat à réarmement automatique. L’indicateur s'allume si le cycle de service de la source d'alimentation a été dépassé. Si l’indicateur de surcharge thermique s'allume, la sortie de la source d'alimentation sera désactivée. Une fois que la source d'alimentation se refroidit, cette lumière s'éteindra et la condition de surchauffe se réinitialisera automatiquement.

Notez que l’interrupteur d’alimentation doit rester en position de marche de manière à ce que le ventilateur continue à fonctionner, ce qui permet à l’appareil de refroidir suffisamment. N’éteignez pas l’unité en cas de surcharge thermique.

8° Indicateur de mise sous tension
L’indicateur POWER ON s’allume lorsque l'interrupteur ON / OFF est en position ON et que la tension d'alimentation correcte est présente.

9° JOB et SAVE
Vous pouvez appuyer sur JOB pour sélectionner les enregistrements de mémoire que vous avez sauvegardés par 1-9. Pour le nouveau réglage des ampères actuels, il suffit d’appuyer sur SAVE.

10. Indicateurs de paramètres de la Programmation
Ces voyants s’allumeront lors de la programmation.
1. Pré-flux de gaz
O251: Plage de réglage absolu 0.1s à 20s (incréments de 0.1s)
Ce paramètre fonctionne uniquement en mode TIG et sert à fournir du gaz à la zone de soudage avant de frapper l’arc, une fois que l’interrupteur de déclenchement de la torche a été pressé. Ce contrôle est utilisé pour réduire considérablement la porosité de la soudure au début d’une soudure.

2. Courant initial
O251: Plage de réglage du courant principal 10AMP à 200AMP
Ce paramètre fonctionne uniquement dans les modes TIG (4T) et sert à définir le courant de démarrage pour TIG. Le courant de démarrage reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
Remarque: Le courant initial maximal disponible sera limité à la valeur de consigne du courant de base

3. Up Slope
Plage de réglage: 0.15-10S (incréments de 0.15S)
Ce paramètre fonctionne uniquement en mode TIG (2T et 4T) et sert à régler le temps nécessaire pour que le courant de soudage augmente, après que le commutateur de déclenchement de la torche a été pressé puis relâché, du courant initial au courant élevé ou de base.

4. Courant de pointe
Définir des plages
O251: 10-200A (DC TIG et AC HF TIG), 10-200A (mode Stick)
Ce paramètre définit le courant TIG WELD. Ce paramètre définit également le courant de soudage STICK

5. Courant de base
Définir des plages
O251: 10AMP à 200AMP (mode TIG DC), 10AMP à 200AMP (mode TIG AC HF)
Courant secondaire (TIG) / courant de pause d’impulsion.

6. Largeur d’impulsion
Plage de réglage 10% - 90%
Ce paramètre définit le pourcentage à temps de la FREQUENCE D’IMPULSIONS pour un courant de soudage élevé lorsque l’IMPULSIONS est activée.

7. Fréquence d’impulsion
Plage de réglage 1HZ - 200HZ
Ce paramètre définit la FREQUENCE D’IMPULSIONS lorsque l’IMPULSIONS est activée.

8. Pente vers le bas
Plage de réglage 0,1-10S
Ce paramètre fonctionne uniquement dans les modes TIG et sert à régler le temps de descente du courant de soudage, après que le commutateur de déclenchement de la torche a été enfoncé pour mettre fin au courant. Ce contrôle est utilisé pour éliminer le cratère qui peut se former à la fin d’une soudure.

9. Courant de fin
O251: Plage de réglage 10A-200A
Ce paramètre fonctionne uniquement en mode TIG (4T) et sert à régler le courant de fin pour TIG. Le courant de fin reste allumé jusqu’à ce que l’interrupteur de déclenchement de la torche soit relâché après avoir été enfoncé.
Remarque: Le courant de cratère maximal disponible sera limité à la valeur de consigne du courant de base.

10. Post-flux
O251: Plage de réglage 1-20S
Ce paramètre fonctionne uniquement en mode TIG et sert à ajuster le temps d’écoulement du gaz après l’extinction de l’arc. Ce contrôle est utilisé pour réduire considérablement l’oxydation de l’électrode de tungstène.

11. Fréquence AC
Plage de réglage 50HZ-200HZ
Ce paramètre fonctionne uniquement en mode AC TIG et sert à régler la fréquence du courant de soudage AC.
Contrôle de fréquence AC
Contrôle la largeur du cône d’arc. L’augmentation de la fréquence AC fournit un arc plus concentré avec un contrôle directionnel accru.
Remarque: Diminuer la fréquence AC adoucit l’arc et élargit la flaque de soudure pour un cordon de soudure plus large.

Perle plus étroite pour les soudures d’angle et les applications automatisées
Perle plus large et nettoyage agissant

Remarque: Diminuer la fréquence AC adoucit l’arc et élargit la flaque de soudure pour un cordon de soudure plus large.
ÉQUIPEMENT SÉRIE MULTIFONCTION

12. Wave Balance
Arrangement 10% -50%
Ce paramètre fonctionne en mode AC TIG et est utilisé pour régler le taux de pénétration en fonction du nettoyage pour le courant alternatif. Généralement, WAVE BALANCE est réglé sur 50% pour le soudage AC STICK. La commande WAVE BALANCE change le rapport de pénétration en action de nettoyage de l’arc de soudage AC TIG. La pénétration maximale de la soudure est atteinte lorsque la commande WAVE BALANCE est réglée sur 10%. Le nettoyage maximum des alliages d'aluminium ou de magnésium fortement oxydés est obtenu lorsque la commande WAVE BALANCE est réglée sur 50%.

Contrôle de l’équilibre AC
L’action de nettoyage du contrôleur de l’arc. Le réglage du % EN de l’onde AC contrôle la largeur de la zone de gravure entourant la soudure.
Remarque: Réglez la commande d’équilibre AC pour une action de nettoyage d’arc adéquate sur les côtés et devant la flaque de soudure. L’équilibre en courant alternatif doit être réglé en fonction de lu poids ou de l’épaisseur des oxydes.

13. Démarrage à chaud
La fonction de démarrage à chaud allume de manière fiable l’électrode et fond parfaitement pour assurer la meilleure qualité même au début de la couture, cette solution fait que le manque de fusion et de soudure à froid désormais partie du passé et réduit considérablement le renforcement des soudures. Réglez le courant de démarrage à chaud ici et l’heure ici.

2.5 Configuration pour le soudage STICK (MMA) O241
Pour l’électrode alcaline, connectez le porte-électrode au point de soudage positif et raccordez le fil de travail à la borne de soudage négative, tandis que pour l’électrode acide, connectez le porte-électrode au point de soudage négatif et connectez le fil de travail au terminal de soudage positif. En cas de doute, consultez le fabricant de l’électrode. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique. Sélectionnez le mode STICK avec le contrôle de sélection de processus.

ÉQUIPEMENT SÉRIE MULTIFONCTION

14. Correction de la force d’arc
Pendant le processus de soudage, la force d’arc empêche la formation de tensions dans le courant. Ceci facilite le soudage des types d'électrode de fusion à grande chute à des intensités de courant faibles avec un arc court en particulier.

L’anti-adhérence empêche l’électrode de recuire.
Anti-adhésif Si l’électrode reste collée, malgré le dispositif Arcrorce, la machine commute automatiquement sur le courant minimum en environ 1 seconde pour éviter une surchauffe de l’électrode. afin de séparer facilement l’électrode et le porte-électrode pour protéger la soudeuse.

Pour l’électrode alcaline, connectez le porte-électrode au point de soudage positif et raccordez le fil de travail à la borne de soudage négative, tandis que pour l’électrode acide, connectez le porte-électrode au point de soudage négatif et connectez le fil de travail au terminal de soudage positif. En cas de doute, consultez le fabricant de l’électrode. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique. Sélectionnez le mode STICK avec le contrôle de sélection de processus.

AVERTISSEMENT
Avant de raccorder la pince de travail à la pièce et 1insérer l’électrode dans le porte-électrode, assurez-vous que le secteur d’alimentation est coupée.

MISE EN GARDE
Retirez tout matériau d’emballage avant l’utilisation. Ne bloquez pas les ouvertures d’aération à l’avant ou à l’arrière de la source d’alimentation de soudage.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

7. Installez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.

8. Serrez le capuchon arrière.

10. Réglez le processus de soudage à LIFT TIG.

11. Réglez le bouton de contrôle du courant de soudage à l’intensité désirée.

12. Vous êtes maintenant prêt à commencer l’alimentation électrique de soudage de LIFT TIG.

2.6 Mise en place pour le soudage LIFT TIG (GTAW) O241

AVERTISSEMENT

Avant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés et recommandés.

REMARQUE

La configuration suivante est connue sous le nom de Polarité Droite ou électrode CC positive. Ceci est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l’acier et l’acier inoxydable.

1. Mettez l’interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.

2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
2.7 Configuration pour la coupe (CUT) O241

Pour que l’unité fonctionne correctement, elle doit être correctement installée. Suivez la procédure ci-dessous pour une installation correcte:

1. Lisez attentivement les règles de sécurité dans ce manuel.
2. Vérifiez à la réception de l’unité qu’il n’y a pas de pièces défectueuses ou de pièces endommagées pendant le transport.
3. Attachez le régulateur d’air comme indiqué sur la photo Installation du régulateur d’air uniquement pour O241.
4. Réglez votre appareil dans une zone correctement ventilée et assurez-vous que les fentes d’aération ne sont pas obstruées.
5. Connectez le câble d’alimentation à une prise située le plus près possible de la zone de travail, afin que l’appareil puisse être rapidement éteint en cas d’urgence.
6. Votre machine est équipée d’une prise de 16 ampères, avant utilisation, vérifiez que la terre verte / jaune est connectée à la prise de terre de la prise montée.
7. Assurez-vous que l’interrupteur d’alimentation et tous les fusibles ont une valeur qui ± 15% du courant maximum absorbé par l’unité. Tous les fusibles doivent être de type lent.
8. Toutes les rallonges du câble d’alimentation doivent avoir la même section que le câble d’alimentation. Les fils d’extension, cependant, ne devraient être utilisés que lorsque c’est absolument nécessaire. Il est important de noter que toute extension des câbles principaux ou des câbles de la torche peut affecter les performances de coupe de cet équipement, car la résistance du câble réduit l’entrée de tension, qui est déterminée par la longueur du câble. La longueur des câbles principaux et des câbles de la torche fournies est recommandée.
9. Fixez la pince de terre à la pièce à couper. Si la surface de la pièce à couper est peinte, rouillée ou recouverte de matériau isolant, nettoyez la surface de façon à obtenir un contact satisfaisant entre la pièce et la pince de terre.
10. Assurez-vous que la torche a été assemblée avec les composants appropriés et que la pointe de coupe convient au courant de coupe.
11. Raccordez l’air au régulateur et ajustez le régulateur pour délivrer 5-6 bar 90ltr / min.
12. Branchez les bornes appropriées et assurez-vous que les connexions sont solides.
13. Appuyez sur la torche de coupe pour obtenir un pilote de la pointe de cuivre, lorsque ce pilote est à la pièce, l’opération de coupe commence.
14. Une fois la coupe terminée, relâchez le bouton de la torche pour éteindre l’arc. Une période de post-écoulement de 45 à 75 secondes (nécessaire pour le refroidissement de la torche) suivra. Ne déconnectez pas l’air tant que cette période de refroidissement n’est pas terminée. Si vous ne le faites pas, vous risquez d’endommager la tête de la torche.

MISE EN GARDE
Ne pointez pas le jet de torche sur des corps étrangers.

2.8 Configuration pour le soudage STICK (MMA) O251

Pendant la coupe, la vitesse du mouvement de la torche doit être en accord avec l’épaisseur de la pièce à couper. Une vitesse excessive provoque un retour d’incandescence vers la torche ce qui raccourcit la durée de vie des parties de la torche les plus sujettes à l’usure. L’encrassement métallique sur la buse doit être retiré dès que possible.

MISE EN GARDE
Eviter l’éclairage inutile de l’arc pilote pour éviter une consommation excessive de l’électrode et de la buse.

Pour l’électrode alcaline, connectez le porte-électrode au point de soudage positif et raccordez le fil de travail à la borne de soudage négative, tandis que pour l’électrode acide, connectez le porte-électrode au point de soudage négatif et connectez le fil de travail au terminal de soudage positif. En cas de doute, consultez le fabricant de l’électrode. Le courant de soudage s’écoule de la source d’alimentation via des bornes de type à bainette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électrique. Sélectionnez le mode STICK avec le contrôle de sélection de processus.
ÉQUIPEMENT SÉRIE MULTIFONCTION

Opération

<table>
<thead>
<tr>
<th>Opération</th>
<th>Opération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source de courant</td>
<td>Source de courant</td>
</tr>
<tr>
<td>Terminal de soudage positif (+)</td>
<td>Terminal de soudage positif (+)</td>
</tr>
<tr>
<td>Terminal de soudage négatif (–)</td>
<td>Terminal de soudage négatif (–)</td>
</tr>
<tr>
<td>Pince de terre</td>
<td>Pince de terre</td>
</tr>
</tbody>
</table>

ÉQUIPEMENT SÉRIE MULTIFONCTION

REMARQUE

La configuration suivante est connue sous le nom de Polarité Droite ou électrode CC positive. Ceci est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l’acier et l’acier inoxydable.

1. Mettez l’interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.
2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
3. Connectez la conduite de gaz / tuyau à la source de gaz de protection appropriée.
5. Connectez la pince de fil de travail à votre pièce de travail.
7. Installez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.
8. Serrez le capuchon arrière.
10. Réglez le processus de soudage à LIFT TIG.
11. Réglez le bouton de contrôl du courant de soudage à l’intensité désirée.
12. Vous êtes maintenant prêt à commencer l’alimentation électrique de soudage de LIFT TIG.

2.9 Mise en place pour le soudage LIFT TIG (GTAW) O251

AVERTISSEMENT

Avant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés et recommandés.
2.10 Configuration pour la coupe (CUT) O251

Pour que l’unité fonctionne correctement, elle doit être correctement installée. Suivez la procédure ci-dessous pour une installation correcte:

1. Lisez attentivement les règles de sécurité dans ce manuel.

2. Vérifiez à la réception de l’unité qu’il n’y a pas de pièces défectueuses ou de pièces endommagées pendant le transport.

3. Attachez le régulateur d’air comme indiqué sur la photo Installation du régulateur d’air uniquement pour O241.

4. Réglez votre appareil dans une zone correctement ventilée et assurez-vous que les fentes d’aération ne sont pas obstruées.

5. Connectez le câble d’alimentation à une prise située le plus près possible de la zone de travail, afin que l’appareil puisse être rapidement éteint en cas d’urgence.

6. Votre machine est équipée d’une prise de 16 ampères, avant utilisation, vérifiez que la terre verte / jaune est connectée à la prise de terre de la prise montée.

7. Assurez-vous que l’interrupteur d’alimentation et tous les fusibles ont une valeur qui ± 15% du courant maximum absorbé par l’unité. Tous les fusibles doivent être de type lent.

8. Toutes les rallonges du câble d’alimentation doivent avoir la même section que le câble d’alimentation. Les fils d’extension, cependant, ne devraient être utilisés que lorsque c’est absolument nécessaire. Il est important de noter que toute extension des câbles principaux ou des câbles de la torche peut affecter les performances de coupe de cet équipement, car la résistance du câble réduit l’entrée de tension, qui est déterminée par la longueur du câble. La longueur des câbles principaux et des câbles de la torche fournies est recommandée.

9. Fixer la pince de terre à la pièce à couper. Si la surface de la pièce à couper est peinte, rouillée ou recouverte de matériau isolant, nettoyer la surface de façon à obtenir un contact satisfaisant entre la pièce et la pince de terre.

10. Assurez-vous que la torche a été assemblée avec les composants appropriés et que la pointe de coupe convient au courant de coupe.

11. Raccorder l’air au régulateur et ajuster le régulateur pour délivrer 5-6 bar 90ltr / min.

13. Appuyez sur la torche de coupe pour obtenir un pilote de la pointe de cuivre, lorsque ce pilote est à la pièce, l’opération de coupe commence.

14. Une fois la coupe terminée, relâchez le bouton de la torche pour éteindre l’arc. Une période de post-écoulement de 45 à 75 secondes (nécessaire pour le refroidissement de la torche) suivra. Ne déconnectez pas l’air tant que cette période de refroidissement n’est pas terminée. Si vous ne le faites pas, vous risquez d’endommager la tête de la torche

MISE EN GARDE

Ne pointez pas le jet de torche sur des corps étrangers.
2.11 Environnement d'exploitation

- La hauteur au-dessus du niveau de la mer est inférieure à 1000m.
- Plage de température de fonctionnement: -10°C ~ +40°C.
- L'humidité relative est inférieure à 90% (20 °C).
- Positionnez de préférence la machine sous certains angles au-dessus du niveau du sol, l'angle maximum ne doit pas dépasser 15°.
- La teneur en poussière, acide, gaz corrosif dans l'air ambiant ou la substance ne peut pas dépasser la norme normale.
- Veillez à ce qu'il y ait une ventilation suffisante pendant le soudage. Il y a au moins 30 cm de liberté entre la machine et le mur.

2.12 Avis d'opération

- Lisez attentivement les instructions de sécurité et le chapitre 1 avant d'essayer d'utiliser cet équipement.
- Connectez le fil de terre à la machine directement.
- En cas de fermeture de l'interrupteur d'alimentation, une tension à vide peut être exportée. Ne touchez pas la sortie d'électrode avec une partie de votre corps.
- Avant l'opération, aucune personne concernée ne doit être laissée, Ne pas regarder l'arc dans les yeux sans protèges.
- Assurez une bonne ventilation de la machine pour améliorer le taux de service.
- Éteignez le moteur lorsque l'opération est terminée pour économiser la source d'énergie.
- Lorsque l'interrupteur d'alimentation s'étend de manière protectrice en raison d'une défaillance. Ne le redémarrez pas tant que le problème n'est pas résolu.

3.1 Dépannage

- Avant que les machines de soudage à l'arc soient expédiées de l'usine, elles ont déjà été débuguées avec précision. Donc, il est interdit à quiconque qui n'est pas autorisé par nos d'apporter des modifications à l'équipement!
- Le cours d'entretien doit être utilisé avec soin. Si un fil devient flexible ou est mal placé, c'est peut-être un danger potentiel pour l'utilisateur!
- Seul le personnel d'entretien professionnel qui est autorisé par nous pourrait réviser le machine!
- Garantie de couper l'alimentation de la machine de soudage à l'arc avant d'activer le contour de l'équipement!
- S'il y a un problème et il n'y a pas le personnel d'entretien professionnel autorisé, s'il vous fait contact l'agent local ou la succursale!

S'il y a quelques problèmes simples de machine à souder de sérieO, vous pouvez consulter le tableau de révisions suivant:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation est allumé, le ventilateur ne fonctionne pas.</td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il y a quelque chose dans le ventilateur</td>
<td>Le nettoyer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le condensateur de démarrage du ventilateur endommagé</td>
<td>Changer le condensateur</td>
</tr>
<tr>
<td>2</td>
<td>Allumez la source d'alimentation, le ventilateur fonctionne, l'indicateur d'alimentation n'est pas allumé</td>
<td>Le voyant d'alimentation est endommagé ou la connexion n'est pas bonne</td>
<td>Changer la lumière d'alimentation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d'alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d'alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td>3</td>
<td>Allumez la source d'alimentation, le ventilateur ne fonctionne pas, le voyant d'alimentation n'est pas allumé</td>
<td>La connection du câble d'alimentation n'est pas bon</td>
<td>Connecter correctement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le câble d'alimentation est cassé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L'indicateur de mise sous tension est endommagé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La lumière de l'indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
<td>Changer la lumière de l'indicateur d'alimentation ou se referer à la solution dans Nr. 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le panneau d'alimentation est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td>4</td>
<td>Allumez la source d'alimentation, l'indicateur d'alimentation est allumé, le ventilateur fonctionne, il n'y a pas de sortie de soudage.</td>
<td>Le tableau de commande est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1er circuit onduleur endommagé</td>
<td>Le réparer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2ème circuit de retour est la faute</td>
<td>Le changer</td>
</tr>
<tr>
<td>5</td>
<td>Pas de sortie de tension à vide (MMA)</td>
<td>Si l'indicateur de surchauffe est allumé</td>
<td>Attendre quelques minutes, la machine peut fonctionner normalement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Le circuit principal est cassé</td>
<td>Vérifier et réparer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>La machine est cassée</td>
<td>Consulter le revendeur ou le fabricant</td>
</tr>
</tbody>
</table>
Dépannage

ÉQUIPEMENT SÉRIE MULTIFONCTION

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Le numéro de l'affichage n'est pas intact</td>
<td>Le panneau d'affichage est endommagé, Le tube numérique est cassé</td>
<td>Changer le panneau d'affichage, Le changer</td>
</tr>
<tr>
<td>7</td>
<td>L'arc ne peut pas être allumé (TIG), il y a une étincelle sur le tableau d'allumage HF</td>
<td>Le câble de soudage n'est pas connecté avec les deux sorties si le soudeur, Le câble de soudage est endommagé, Le câble de terre connecté de manière instable, Le câble de soudage est trop long, Il y a de l'huile ou de la poussière sur la pièce, La tension d'entrée n'est pas stable</td>
<td>Connecter le câble de soudage à la sortie du soudeur, Le réparer ou changer, Consulter le revendeur ou le fabricant, Utiliser un câble de soudage approprié, Vérifier et l'effacer, Réduire la distance (environ 3mm, moins de 5mm), Vérifier l'alimentation</td>
</tr>
<tr>
<td>8</td>
<td>L'arc ne peut pas être allumé (TIG), il n'y a pas d'étincelle sur le tableau d'allumage HF</td>
<td>Le tableau d'allumage HF ne fonctionne pas, La distance entre le déchargeur est trop courte ou trop longue, Le dysfonctionnement de l'interrupteur du pistolet de soudage thermique</td>
<td>Réparer ou changer, Régler la distance (environ 0.8mm), Vérifier l'interrupteur de la torche de soudage, le câble de commande et la douille aérodynamique.</td>
</tr>
<tr>
<td>9</td>
<td>Allumez la source d'alimentation, tout est normal, mais pas d'allumage HF</td>
<td>Pas de flux de gaz argon ou le tube d'air se connecter pas bon, Vérifier si la fonction sélectionnée MMA</td>
<td>Vérifier le flux de gaz argon ou le tube d'air, connecter sans bon, Vérifier et reconnecter</td>
</tr>
<tr>
<td>10</td>
<td>Pas de flux de gaz (TIG)</td>
<td>Le cylindre de gaz est proche ou la pression du gaz est basse, Quelque chose est dans la vaive, La soupape électromagnétique est endommagée, Le tube d'air est cassé, Pression trop élevée ou le régulateur d'air est cassé</td>
<td>Ouvrir ou changer le cylindre de gaz, Le retirer, Le changer, Le changer, Vérifier le gaz</td>
</tr>
<tr>
<td>11</td>
<td>Le gaz circule toujours</td>
<td>Quelque chose est dans la vaive, La soupape électromagnétique est endommagée</td>
<td>Le retirer, Le changer</td>
</tr>
<tr>
<td>12</td>
<td>Le courant de soudage ne peut pas être ajusté</td>
<td>Vérifier si l'électrode colle à la pièce que la fonction anti-adhérence est activée, Le tableau de commande est cassé</td>
<td>Séparer l'électrode et la pièce à travailler, Le réparer ou changer</td>
</tr>
</tbody>
</table>

ÉQUIPEMENT SÉRIE MULTIFONCTION

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Pas de sortie AC en sélectionnant "AC"</td>
<td>Le panneau d'alimentation est cassé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td>14</td>
<td>Le courant de soudage affiché n'est pas conforme à la valeur réelle</td>
<td>La valeur minimale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre l'min sur le tableau de commande</td>
</tr>
<tr>
<td>15</td>
<td>La courant de soudage est réglé trop bas</td>
<td>La valeur maximale affichée ne correspond pas à la valeur réelle</td>
<td>Ajuster le potentiomètre max sur le tableau de commande</td>
</tr>
<tr>
<td>16</td>
<td>Le voyant de surcharge thermique est allumé</td>
<td>L'arc est trop long dans le processus de soudage</td>
<td>Augmenter le courant de soudage</td>
</tr>
<tr>
<td>17</td>
<td>L'électrode Tig fond lors du soudage</td>
<td>Le câble d'alimentation ou le câble de soudage est trop long</td>
<td>Utiliser la longueur appropriée du fabricant</td>
</tr>
<tr>
<td>18</td>
<td>Flutters d'arc pendant le soudage Tig</td>
<td>Le câble d'alimentation ou le câble de soudage est trop long</td>
<td>Changer pour un réglage approprié</td>
</tr>
<tr>
<td>19</td>
<td>Lorsque la fonction Couper est sélectionnée, il y a HF mais ne peut pas couper</td>
<td>Le flux d'air est mal connecté</td>
<td>Connectez le circuit correctement</td>
</tr>
</tbody>
</table>

Dépannage
CHAPITRE 6
ÉQUIPEMENT DE LA SÉRIE MIG

1.1 Introduction courte

La machine de soudage MIG R221, R231, R251, R311 adopte la dernière technologie de modulation de largeur d’impulsion (PWM) et le module d’alimentation à transistor bipolaire isolé (IGBT), qui peut changer la fréquence de travail à moyenne fréquence. transformateur à moyenne fréquence de l’armoire. ainsi, il est caractérisé avec portable, smallsize, poids léger, faible consommation et etc..

Caractéristiques du MIG R221, R231, R251, R311:
- Système de contrôle MCU, répond immédiatement à tout changement.
- Haute fréquence et haute tension pour l’amorçage de l’arcafind’assurer le taux de succès de l’arcd’allumage
- En DC TIG sans fonctionnement HF, si l’électrode entungstènetouche la pièce à souder lors du soudage, le courant tombera en court-circuit pour protéger le tungstène.
- Sélection simple du matériau / diamètre du fil et le savoir-faire stocké contrôle automatiquement le processus de soudage.
- Protection intelligente: surintensité, surchauffe, lorsque les problèmes mentionnés ont été signalés, le voyant d’alarme sur le panneau avant sera allumé et le courant de sortie sera coupé. Peut auto-protéger et prolonger la vie d’utilisation.

1.2 Principe de fonctionnement

Le principe de fonctionnement de machines à soudage de TIG V1841 V241 V341 AC / DC monophasé 230V est représenté par la figure suivante. La fréquence de travail AC est rectifiée en courant continu DC (environ 312V), puis convertie en courant alternatif AC moyenne fréquence (environ 20-40KHz) par le dispositif onduleur (module IGBT), après réduction de la tension par transformateur moyen (transformateur principal) et rectification par le redresseur de fréquence moyenne (diodes de rétablissement rapide), puis est sortie DC ou AC en sélectionnant le module IGBT. Le circuit adopte la technologie de contrôle de rétroaction actuelle pour assurer la sortie de courant de manière stable. Pendant ce temps, le paramètre de courant de soudage peut être ajusté en continu et sans à-coup pour répondre aux exigences des métiers de soudage.
ÉQUIPEMENT DE LA SÉRIE MIG

1.3 Spécifications R221

<table>
<thead>
<tr>
<th>Désignation</th>
<th>VECTOR DIGITALF R221</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>15.9kg</td>
</tr>
<tr>
<td>Dimensions de la machine à souder</td>
<td>H490mmx8225mmxT380mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur multi-process</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de tension de sortie</td>
<td>10-25 V</td>
</tr>
<tr>
<td>Plage de vitesse du fil d'alimentation</td>
<td>2.5-18</td>
</tr>
<tr>
<td>Poids de rouleau de fil</td>
<td>5kg</td>
</tr>
<tr>
<td>Diamètre du rouleau de fil</td>
<td>0.6/0.8/1.0</td>
</tr>
<tr>
<td>Épaisseur du matériau</td>
<td>Jusqu'à 0.8mm</td>
</tr>
<tr>
<td>Efficacité</td>
<td>80%</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>0.73</td>
</tr>
<tr>
<td>Plage de courant de soudage (mode MIG)</td>
<td>25-200 A</td>
</tr>
<tr>
<td>Plage de courant de soudage (mode STICK)</td>
<td>30-170 A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>22.6 A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>35.7 A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>12.3KVA</td>
</tr>
<tr>
<td>Cycle de service, 40 ° C, 10 min (MIG)</td>
<td>200A@ 40%24V 155A@ 100%20.3V</td>
</tr>
<tr>
<td>Cycle de service, 40 ° C, 10 min (MMA)</td>
<td>170A@ 40%26.8V 107A@ 100%24.2V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
<tr>
<td>Classe d'isolation</td>
<td>F</td>
</tr>
<tr>
<td>Flux du gaz</td>
<td>3s</td>
</tr>
</tbody>
</table>

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.
1.6 Spécifications R231

<table>
<thead>
<tr>
<th>Définition</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poids</td>
<td>16.2 kg</td>
</tr>
<tr>
<td>Dimensions de la machine à souder</td>
<td>H490mmxB225mmxT380mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroidi</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d’alimentation de l’onduleur multi-process</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>1</td>
</tr>
<tr>
<td>Tension nominale d’alimentation</td>
<td>230V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d’approvisionnement</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de tension de sortie</td>
<td>10-25 V</td>
</tr>
<tr>
<td>Plage de vitesse du fil d’alimentation</td>
<td>2.5-18</td>
</tr>
<tr>
<td>Poids de rouleau de fil</td>
<td>5 kg</td>
</tr>
<tr>
<td>Diamètre du rouleau de fil</td>
<td>0.6/0.8/1.0</td>
</tr>
<tr>
<td>Épaisseur du matériau</td>
<td>Jusqu’à 0.8mm</td>
</tr>
<tr>
<td>Efficacité</td>
<td>80%</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>0.73</td>
</tr>
<tr>
<td>Plage de courant de soudage (mode MIG)</td>
<td>25-200 A</td>
</tr>
<tr>
<td>Plage de courant de soudage (mode STICK)</td>
<td>30-170 A</td>
</tr>
<tr>
<td>Plage de courant de soudage (mode WIG)</td>
<td>10-200 A</td>
</tr>
<tr>
<td>Courant d’entrée effectif</td>
<td>22.6 A</td>
</tr>
<tr>
<td>Courant d’entrée maximum</td>
<td>35.7 A</td>
</tr>
<tr>
<td>Exigence de générateur monophasé</td>
<td>12.3KVA</td>
</tr>
<tr>
<td>Cycle de service, 40 ° C, 10 min (MIG))</td>
<td>200A@ 40%24V 126A@ 100%20.3V</td>
</tr>
<tr>
<td>Cycle de service, 40 ° C, 10 min (MMA)</td>
<td>170A@ 40%26.8V 107A@ 100%24.2V</td>
</tr>
<tr>
<td>Cycle de service, 40 ° C, 10 min (WIG)</td>
<td>200A@ 40%18V 126A@ 100%15V</td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
</tr>
<tr>
<td>Classe d’isolation</td>
<td>F</td>
</tr>
<tr>
<td>Flux du gaz</td>
<td>3s</td>
</tr>
</tbody>
</table>

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l’installation, de l’utilisation, des applications, de la maintenance et du service corrects.
ÉQUIPEMENT DE LA SÉRIE MIG

1.9 Spécifications R251/R311

<table>
<thead>
<tr>
<th>Spécification</th>
<th>R251</th>
<th>R311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Désignation</td>
<td>VECTOR DIGITALF R251</td>
<td>VECTOR DIGITALF R311</td>
</tr>
<tr>
<td>Poids</td>
<td>23.6 kg</td>
<td>24.8 kg</td>
</tr>
<tr>
<td>Dimensions de la machine à souder</td>
<td>H590mmx240mmx750mm</td>
<td>H590mmx240mmx750mm</td>
</tr>
<tr>
<td>Refroidissement</td>
<td>Ventilateur refroid</td>
<td>Ventilateur refroid</td>
</tr>
<tr>
<td>Type de soudeur</td>
<td>Source d'alimentation de l'onduleur multi-process</td>
<td>Source d'alimentation de l'onduleur multi-process</td>
</tr>
<tr>
<td>Normes européennes</td>
<td>EN 60974-1 / IEC 60974-1</td>
<td>EN 60974-1 / IEC 60974-1</td>
</tr>
<tr>
<td>Nombre de phases</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tension nominale d'alimentation</td>
<td>400V +/- 15%</td>
<td>400V +/- 15%</td>
</tr>
<tr>
<td>Fréquence nominale d'approvisionnement</td>
<td>50/60Hz</td>
<td>50/60Hz</td>
</tr>
<tr>
<td>Gamme de tension de sortie</td>
<td>13-30 V</td>
<td>13-30 V</td>
</tr>
<tr>
<td>Plage de vitesse du fil d'alimentation</td>
<td>1, 4-18</td>
<td>1, 4-18</td>
</tr>
<tr>
<td>Poids de rouleau de fil</td>
<td>5-15kg</td>
<td>5-15kg</td>
</tr>
<tr>
<td>Diamètre du rouleau de fil</td>
<td>0.8/1.0</td>
<td>0.8/1.0</td>
</tr>
<tr>
<td>Épaisseur du matériau</td>
<td>Jusqu'à 0.8 mm</td>
<td>Jusqu'à 0.8 mm</td>
</tr>
<tr>
<td>Efficacité</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>Facteur de puissance</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>Plage de courant de soudage</td>
<td>30-250 A</td>
<td>30-300 A</td>
</tr>
<tr>
<td>Courant d'entrée effectif</td>
<td>9.3 A</td>
<td>8.7 A</td>
</tr>
<tr>
<td>Courant d'entrée maximum</td>
<td>12.1 A</td>
<td>15.9 A</td>
</tr>
<tr>
<td>Exigence de génératrice monophasé</td>
<td>12.6KVA</td>
<td>16.5KVA</td>
</tr>
<tr>
<td>Cycle de service, 40 °C, 10 min (MIG)</td>
<td>250A@ 60%26.5V</td>
<td>300A@ 30%29V</td>
</tr>
<tr>
<td></td>
<td>193A@ 100%23.6V</td>
<td>232A@ 60%25.6V</td>
</tr>
<tr>
<td></td>
<td>164A@ 100%22.2V</td>
<td></td>
</tr>
<tr>
<td>Tension en circuit ouvert</td>
<td>66V DC</td>
<td>66V DC</td>
</tr>
<tr>
<td>Classe de protection</td>
<td>IP23</td>
<td>IP23</td>
</tr>
<tr>
<td>Classe d'isolation</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Flux du gaz</td>
<td>3s</td>
<td>3s</td>
</tr>
</tbody>
</table>

REMARQUE

En raison des variations pouvant survenir dans les produits manufacturés, les performances, les tensions, les valeurs nominales, toutes les capacités, les mesures, les dimensions et les poids cités sont approximatifs. Les capacités et les cotes réalisables en utilisation et en fonctionnement dépendront de l'installation, de l'utilisation, des applications, de la maintenance et du service corrects.

1.10 Articles emballés

- 4M MB-24 MIG Gun – 25M²
- Embout de contact 1,0 mm ajusté 0,8 mm ajusté
- Tuyau de gaz 3M 8x13.5
- Pince de terre 300 A avec câble 3M
- Câble d'alimentation 3M
- Rouleaux d'entraînement
- Manuel d'utilisation

1.11 Cycle de service

Le rapport cyclique nominal d’une source d’alimentation de soudage est une indication du temps pendant lequel elle peut fonctionner à sa sortie nominale de courant de soudage sans dépasser les limites de température de l’exemple suivant. Supposons qu’une source d’alimentation de soudage soit conçue pour fonctionner à un cycle de service de 30%, 300 ampères à 29.0 volts. Cela signifie qu’il a été conçu et construit pour fournir l’amperage nominal (300 A) pendant 3 minutes, c’est-à-dire le temps de soudage à l’arc, toutes les 10 minutes (30% de 10 minutes sont 3 minutes). Pendant les 7 autres minutes de la période de 10 minutes, la source d’alimentation de soudage doit tourner au ralenti et permettre le refroidissement. La coupure thermique fonctionnera si le cycle de service est dépassé.

![Graphique du cycle de service](image-url)

Opération sûre

MIG(R311)

MIG(R251)

Courant de soudage (AMPS)

Duty Cycle (PERCENTAGE)
1. Betriebszustandsanzeige
Die grüne Betriebszustandsanzeige leuchtet auf, wenn der Ein-/Ausschalter in ON Stellung befindet und der richtige Netzstrom vorhanden ist.

2. Anzeigeleuchte thermische Überlast

3. JOB und SPEICHERN Knopf
Sie können JOB drücken, um die Speicherdatensätze auszuwählen, die Sie zuvor von 1-9 gespeichert haben. Für die neue Einstellung der aktuellen Basisstrom Ampere, drücken Sie SAVE.

4. Ampèremètre numérique
Le compteur numérique est utilisé pour afficher l’intensité prédéfinie (prévisualisation) dans les modes STICK / Mig et l’ampérage de soudage réel de la source d’alimentation lors du soudage, il est également utilisé pour afficher les paramètres à partir du bouton de fonction 6.

5. Voltmètre numérique
Le compteur numérique est utilisé pour afficher la tension prédéfinie (aperçu) dans les modes Mig et la tension de soudage réelle de la source d’alimentation lors du soudage. Ce compteur numérique est utilisé pour afficher la tension de la borne de sortie de soudage dans les modes STICK pendant le sans-soudage ou le soudage.

6. Sélection de la bouton de fonction
Appuyez et relâchez ce bouton pour changer le mode de fonctions de soudage sélectionné du courant de soudage à l’inductance en Volt à Burnback.

7. Contrôle positif
Le contrôle positif est utilisé pour régler le paramètre de la fonction sélectionnée à partir de 6.

8. Negative Kontrolle
Le contrôle négatif est utilisé pour le paramètre de réglage moins pour la fonction sélectionnée à partir de 6.

9. Bouton de sélection du processus de soudage
Appuyez et relâchez ce bouton pour changer le mode de processus de soudage sélectionné de mig à tig et à stick. Le processus de soudage passe au processus suivant dans la séquence chaque fois que le bouton est enfoncé et relâché. Les indicateurs verts à côté du bouton s’allumeront pour identifier le mode de traitement de mig à tig et à stick.

10. Bouton de verrouillage du déclencheur 2T - 4T
Appuyez et relâchez le bouton pour changer le mode de fonctionnement sélectionné du déclencheur. Le mode sélectionné peut être “2T” (déverrouillé) ou “4T” (verrouillé). L’indicateur vert à côté du bouton s’allume pour identifier le mode sélectionné (2T ou 4T). En mode 4T, une fois la soudure démarrée, vous pouvez relâcher la gâchette et continuer le soudage jusqu’à ce que la gâchette soit à nouveau activée ou que l’arc de soudage soit rompu pour arrêter l’arc de soudage.

11. 0.6/0.8/1.0/SPL
Appuyez sur ce bouton pour choisir le diamètre des matériaux de soudage, SPL est en acier inoxydable.

12. Connexion de torche MIG
L’adaptateur de torche MIG est le point de connexion de la torche MiG. Appuyez sur la torche MIG et fixez-la en tournant la bague de verrouillage vers la droite (sens des aiguilles d’une montre).

13. Borne de sortie de soudage négatif
La borne de soudage négatif est utilisée pour raccorder la sortie de soudage de la source d’alimentation à l’accessoire de soudage approprié, tel que la pince de terre (pour la fonction Mig) ou le porte-électrode (pour la fonction Stick).

14. Borne de sortie de soudage positif
La borne de soudage positive est utilisée pour connecter la sortie de soudage de la source d’alimentation à l’accessoire de soudage approprié tel que le pistolet MIG (via le fil de polarité MIG Gun) ou la pince de terre (pour la fonction Stick).
ÉQUIPEMENT DE LA SÉRIE MIG

2.2 Disposition pour le panneau R231

1. **Betriebszustandanzeige**
 Die grüne Betriebszustandsanzeige leuchtet auf, wenn der Ein-/Ausschalter in ON Stellung befindet und der richtige Netzstrom vorhanden ist.

2. **Anzeigeleuchte thermische Überlast**

3. **JOB und SPEICHERN Knopf**
 Sie können JOB drücken, um die Speicherdatensätze auszuwählen, die Sie zuvor von 1-9 gespeichert haben. Für die neue Einstellung der aktuellen Basisstrom Ampere, drücken Sie SAVE.

4. **Ampèremètre numérique**
 Le compteur numérique est utilisé pour afficher l’intensité prédéfinie (prévisualisation) dans les modes STICK / Mig et l’ampérage de soudage réel de la source d’alimentation lors du soudage, il est également utilisé pour afficher les paramètres à partir du bouton de fonction 6.

5. **Voltmètre numérique**
 Le compteur numérique est utilisé pour afficher la tension prédéfinie (aperçu) dans les modes Mig et la tension de soudage réelle de la source d’alimentation lors du soudage. Ce compteur numérique est utilisé pour afficher la tension de la borne de sortie de soudage dans les modes STICK pendant le sans-soudage ou le soudage.

6. ** Sélection de la bouton de fonction**
 Appuyez et relâchez ce bouton pour changer le mode de fonctions de soudage sélectionné du courant de soudage à l’inductance en Volt à Burnback.

7. **Contrôle positif**
 Le contrôle positif est utilisé pour régler le paramètre de la fonction sélectionnée à partir de 6.

8. **Negative Kontrolle**
 Le contrôle négatif est utilisé pour le paramètre de réglage moins pour la fonction sélectionnée à partir de 6.

9. **Bouton de sélection du processus de soudage**
 Appuyez et relâchez ce bouton pour changer le mode de processus de soudage sélectionné de mig à tig et à stick. Le processus de soudage passe au processus suivant dans la séquence chaque fois que le bouton est enfonce et relâché. Les indicateurs verts à côté du bouton s’allumeront pour identifier le mode de traitement de mig à tig et à stick.

10. **Bouton de verrouillage du déclencheur 2T - 4T**
 Appuyez et relâchez le bouton pour changer le mode de fonctionnement sélectionné du déclencheur. Le mode sélectionné peut être 2T (déverrouillé) ou 4T (verrouillé). L’indicateur vert à côté du bouton s’allume pour identifier le mode sélectionné (2T ou 4T). En mode 4T, une fois la soudure démarrée, vous pouvez relâcher la gâchette et continuer le soudage jusqu’à ce que la gâchette soit à nouveau activée ou que l’arc de soudage soit rompu pour arrêter l’arc de soudage.

11. **0.6/0.8/1.0/SPL**
 Appuyez sur ce bouton pour choisir le diamètre des matériaux de soudage, SPL est en acier inoxydable.

12. **Connexion de torche MIG**
 L’adaptateur de torche MIG est le point de connexion de la torche MIG. Appuyez sur la torche MIG et fixez-la en tournant la bague de verrouillage vers la droite (sens des aiguilles d’une montre).

13. **Borne de sortie de soudage négatif**
 La borne de soudage négative est utilisée pour raccorder la sortie de soudage de la source d’alimentation à l’accessoire de soudage approprié, tel que la pince de terre (pour la fonction Mig) ou le porte-électrode (pour la fonction Stick).

14. **Borne de sortie de soudage positif**
 La borne de soudage positive est utilisée pour connecter la sortie de soudage de la source d’alimentation à l’accessoire de soudage approprié tel que le pistolet MIG (via le fil de polarité MIG Gun) ou la pince de terre (pour la fonction Stick).

AVERTISSEMENT
NE TOUCHEZ PAS le fil d’électrode pendant qu’il est alimenté dans le système. Le fil d’électrode sera au potentiel de tension de soudage.
 Opération

15. Commutateur de télécommande
Le réceptacle du commutateur de commande à distance est utilisé pour connecter un interrupteur à déclenchement ou une commande à distance au circuit de source d'alimentation de soudage.
Pour effectuer les connexions, alignez la rainure de clavette, insérez la fiche et faites tourner le collier fileté complètement dans le sens des aiguilles d'une montre. Les informations de prise sont incluses dans le cas où le câble fourni ne convient pas et il est nécessaire de câbler une prise ou un câble pour l'interface avec le réceptacle.

16. Sortie de gaz de protection
La sortie de gaz de protection située sur le panneau avant est une connexion rapide d'une torche TIG appropriée.

2.3 MIG polarité plomb
Le fil de polarité est utilisé pour connecter le pistolet MIG à la borne de sortie positive ou négative appropriée (permettre l'inversion de polarité pour différentes applications de soudage). En général, le conducteur de polarité doit être connecté à la borne de soudage positive (+) d'acier inoxydable ou d'un fil d'électrode d'aluminium. Lors de l'utilisation de fil sans gaz, le fil de polarité est généralement relié à la borne de soudage négative (-). En cas de doute, consulter le fabricant du fil d'électrode pour la polarité. Il est essentiel, cependant, que la fiche mâle est insérée et tournée en toute sécurité pour obtenir une connexion électrique sonore.

ÉQUIPEMENT DE LA SÉRIE MIG

2.4 Disposition pour le panneau R311

NE TOUCHEZ PAS le fil d'électrode pendant qu'il est alimenté dans le système. Le fil d'électrode sera au potentiel de tension de soudage.

1. Betriebszustandanzeige
Die grüne Betriebszustandsanzeige leuchtet auf, wenn der Ein-/Ausschalter in ON Stellung befindet und der richtige Netzstrom vorhanden ist.

2. Arbeitsanzeige
Diese Anzeige zeigt an, dass sich die Maschine im Arbeitsprozess befindet.

3. Anzeigeleuchte thermische Überlast

4. Ampèremètre numérique
Le compteur numérique est utilisé pour afficher l'intensité prédéfinie (prévisualisation) dans les modes STICK / Mig et l'amperage de soudage réel de la source d'alimentation lors du soudage, il est également utilisé pour afficher les paramètres à partir du bouton de fonction 8.
Opération

5. Voltmètre numérique
Le compteur numérique est utilisé pour afficher la tension prédéfinie (aperçu) dans les modes Mig et la tension de soudage réelle de la source d'alimentation lorsque la soudure. Ce compteur numérique est utilisé pour afficher la tension de la borne de sortie de soudage dans les modes STICK pendant le sans-soudage ou le soudage.

6. Bouton de verrouillage du déclencheur 2T - 4T
Appuyez et relâchez le bouton pour changer le mode de fonctionnement sélectionné du déclencheur. Le mode sélectionné peut être "2T" (déverrouillé) ou "4T" (verrouillé). L'indicateur vert à côté du bouton s'allume pour identifier le mode sélectionné (2T ou 4T). En mode 4T, une fois la soudure démarrée, vous pouvez relâcher la gâchette et continuer la soudure jusqu'à ce que la gâchette soit à nouveau activée ou que l'arc de soudage soit rompu pour arrêter l'arc de soudage.

7. Sélection de la bouton de fonction
Appuyez et relâchez ce bouton pour changer le mode de fonctions de soudage sélectionné du courant de soudage à l'inductance en Volt à Burnback.

8. Contrôle positif
Le contrôle positif est utilisé pour régler le paramètre de la fonction sélectionnée à partir de 6.

9. Negative Kontrolle
Le contrôle négatif est utilisé pour le paramètre de réglage moins pour la fonction sélectionnée à partir de 6.

10. Vérification de gaz
Appuyez sur ce bouton pour vérifier le débit du gaz, réprimer le bouton provoquera la fermeture du flux de gaz.

11. Vérification de fil
Appuyez sur ce bouton pour vérifier les fils provenant des rouleaux de soudage.

12. Connexion de torche Mig
L'adaptateur de torche Mig est le point de connexion de la torche Mig. Appuyez sur la torche Mig et fixez-la en tournant la bague de verrouillage vers la droite (sens des aiguilles d'une montre).

13. Borne de sortie de soudage négatif
La borne de soudage négative est utilisée pour raccorder la sortie de soudage de la source d'alimentation à l'accessoire de soudage approprié, tel que la pince de terre (pour la fonction Mig) ou le porte-électrode (pour la fonction Stick).

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne.

AVERTISSEMENT
LES CHOCS ÉLECTRIQUES PEUVENT Tuer! Assurez-vous que l'alimentation d'entrée est déconnectée de la source d'alimentation avant de continuer. NE réinstallez PAS la puissance d'entrée avant d'avoir été invité à le faire dans ces instructions.

1. Desserez le bouton de réglage de la pression du ressort si nécessaire et basculez-le vers le bas (voir la partie 1).

ÉQUIPEMENT DE LA SÉRIE MIG

Opération

2. Placez la bobine de fil sur le moyeu, remettez le couvercle du moyeu en place, tournez fermement pour maintenir la bobine de fil stable sur le moyeu.

MISE EN GARDE
Soyez prudent lorsque vous manipulez le fil enroulé, car il aura tendance à se défaire lorsqu'il est desserré de la bobine. Saisissez la fin du fil fermement et ne le lâchez pas.

2.6 Installation d'une bobine de 5 kg de diamètre 300 mm (convient pour R251 et R311)

Pour installer une bobine de 5 kg / 300 mm de diamètre, assemblez le fil dans le moyeu de la bobine et remettez le couvercle du moyeu de bobine de fil.

Installation de bobine de fil:

1. Retirez le couvercle du moyen du fil de bâton ou de la bobine de fil.
2. Placez le fil de bâton ou de la bobine de fil dans le moyeu de la bobine et remettez le couvercle du moyeu de fil en place.

MISE EN GARDE
Soyez prudent lorsque vous manipulez le fil enroulé, car il aura tendance à se défaire lorsqu'il est desserré de la bobine. Saisissez la fin du fil fermement et ne le lâchez pas.

2.7 Insertion de fil dans le mécanisme d'alimentation

Pour installer une bobine de 15 kg / 300 mm de diamètre, assemblez le fil dans le moyeu de la bobine et remettez le couvercle du moyeu de bobine de fil.

Installation de bobine de fil:

1. Retirez le couvercle du moyeu du fil de bâton ou de la bobine de fil.
2. Placez le fil de bâton ou de la bobine de fil dans le moyeu de la bobine et remettez le couvercle du moyeu de fil en place.

MISE EN GARDE
Soyez prudent lorsque vous manipulez le fil enroulé, car il aura tendance à se défaire lorsqu'il est desserré de la bobine. Saisissez la fin du fil fermement et ne le lâchez pas.
Tous les rouleaux d'alimentation rainurés ont leur taille de fil ou une gamme estampillée sur le côté du rouleau. Sur les rouleaux avec des rainures de tailles différentes, la taille du fil estampé extérieur (visible à l'installation) indique la rainure utilisée.

Les rouleaux d'alimentation sont retirés en tournant le capuchon de retenue du rouleau d'alimentation et en alignant les rainures / languettes du bouton de retenue avec les rainures du mécanisme d'entraînement. Les rouleaux d'alimentation sont installés en plaçant le rouleau d'alimentation sur les rainures du mécanisme d'entraînement et en tordant le capuchon de retenue du rouleau d'alimentation de sorte que les rainures / languettes reposent contre la face du rouleau d'alimentation où elles s'enclenchent.

AVERTISSEMENT

Le fil de soudage est électriquement chaud s'il est alimenté en appuyant sur l'interrupteur du pistolet MIG. Le contact de l'électrode avec la pièce à travailler entraînera un arc avec l'interrupteur du pistolet MIG enfoncé.

2.10 Instructions d'utilisation du régulateur de gaz de protection

AVERTISSEMENT

Cet équipement est conçu pour être utilisé uniquement avec des gaz de protection (inertes).

REMARQUE

Le gaz de protection n'est pas requis si l'unité est utilisée avec des fils FCAW (soudage à l'arc avec fil fourré) auto-protégés.

Sécurité du régulateur de gaz de protection

Les régulateurs de gaz sont conçus pour réduire et contrôler le gaz à haute pression d'une bouteille ou d'un pipeline à la pression de service requise pour l'équipement qui l'utilise. Si l'équipement est mal utilisé, des conditions dangereuses sont créées et peuvent provoquer des accidents. Il est de la responsabilité des utilisateurs de prévenir de telles conditions. Avant de manipuler ou d'utiliser l'équipement, comprenez et respectez à tout moment les pratiques de sécurité prescrites dans les instructions du fabricant. PROCÉDURES SPÉCIFIQUES pour l'utilisation des régulateurs sont énumérées ci-dessous.

1. NE JAMAIS soumettre le régulateur à une pression d'entrée supérieure à sa pression d'entrée nominale
2. NE JAMAIS pressuriser un régulateur dont les pièces sont desserrées ou endommagées ou dans un état douteux. NE JAMAIS desserrer une connexion ou tenter de retirer une partie quelconque d'un régulateur tant que la pression du gaz n'a pas été relâchée. Sous pression, le gaz peut propulser dangereusement une pièce lâche.
3. NE PAS retirer le régulateur d'un cylindre sans fermer la vanne de la bouteille à l'avance et libérer du gaz dans les chambres de haute et de basse pression du régulateur
4. NE PAS utiliser le régulateur comme une souape de contrôle. Lorsque l'équipement en aval n'est pas utilisé pendant de longues périodes, fermez le gaz à la valve de la bouteille et libérez le gaz de l'équipement.
5. Ouvrir la valve du cylindre LENTEMENT. Fermer après utilisation.
2. Déplacez le bras du rouleau de pression (supérieur) en le faisant pivoter vers la droite.
 (Voir la partie 2).
3. Assurez-vous que la fin du fil est libre de toute bavure et est droite. Passez l'extrémité
du fil dans le guide-fil d'entrée et sur le rouleau d'alimentation. Assurez-vous que la
rainure appropriée est utilisée (voir la partie 2)
4. Passez le fil MIG sur la rainure du rouleau d'entraînement, à travers le guide de sortie et
dépasser l'adapteur de torche MIG. Montez ensuite la torche MIG pour s'assurer que
le fil MIG passe dans la gaine de la torche MIG de la torche MIG
5. Fermez le bras du rouleau de pression
6. Faites pivoter le bouton de réglage de la pression du ressort pour le remettre en place
7. Utilisez le bouton de réglage de la pression du ressort pour créer un état "serré". (Dans
le sens des aiguilles d'une montre pour serrer et dans le sens inverse des aiguilles d'une
montre pour desserrer)
8. La dernière photo montre le résultat avec le fil installé. Passez à la section suivante pour
le réglage correct de la tension

ÉQUIPEMENT DE LA SÉRIE MIG

2.8 Réglage de la pression du rouleau d'alimentation

Le rouleau sur le bras oscillant exerce une pression sur le rouleau rainuré via un dispositif
tension réglable. Le dispositif de réglage de la tension doit être réglé à une pression
minimale qui fournira une alimentation en fil satisfaisante sans glissement. Si un glissement
se produit et que l'inspection du fil hors du pistolet MIG ne révèle aucune déformation ou
usure, la doublure du conduit doit être vérifiée à la recherche de plis ou de colmatage des
flocons de métal. Si ce n'est pas la cause du glissement, la pression du rouleau d'alimentation
peut être augmentée en tournant le bouton de réglage de la tension dans le sens des aiguilles
d'une montre. L'utilisation d'une pression excessive peut entraîner une usure rapide du
rouleau d'alimentation, de l'arbre du moteur et des roulements du moteur

REMARQUE

Des embouts et des chemises de contact authentiques doivent être utilisés. Beaucoup de
revêtements non authentiques utilisent des matériaux de qualité inférieure qui peuvent
causer des problèmes d'alimentation en fil.

2.9 Changer le rouleau d'alimentation

REMARQUE

Les rouleaux d'alimentation sont souvent livrés avec un revêtement antirouille qui doit être
nettoyé avant l'installation. Un rouleau d'alimentation se compose de quatre rainures de
tailles différentes. En sortie d'usine, le rouleau d'entraînement est installé pour 0,6 / 0,8 mm
Le marquage estampé sur le rouleau d'alimentation se réfère à la rainure la plus éloignée
du marquage estampé. Une fois monté, ce sera la rainure la plus proche du moteur et celle
ti à enfiler
Pour garantir une alimentation correcte du fil, la rainure la plus proche du moteur doit
correspondre à la taille du fil d'électrode utilisé.

La taille qui est visible lors du montage du rouleau d'alimentation
est la taille de la rainure utilisée

REMARQUE

Tous les rouleaux d'alimentation rainurés ont leur tailles de fil ou une gamme estampillée
sur le côté du rouleau. Sur les rouleaux avec des rainures de tailles différentes, la taille du
fil estampé extérieur (visible à l'installation) indique la rainure utilisée.
Opération

4. Raccordez la conduite de gaz fournie entre la sortie du régulateur et l'entrée souhaitée à l'arrière de la source d'alimentation.

Assurez-vous que la bouteille de gaz est fixée à un pilier du bâtiment, à un support mural ou fixée de toute autre manière en position verticale.

5. Pour protéger les équipements sensibles en aval, un dispositif de sécurité séparé peut être nécessaire si le régulateur n'est pas équipé d'un dispositif de décompression.

Opération

Avec le régulateur connecté au cylindre ou à la canalisation, et la vis de réglage / bouton complètement désengagé, pressuriser comme suit:

1. Tenez-vous d'un côté du régulateur et ouvrez lentement la valve du cylindre. Si elle est ouverte rapidement, une surpression subite peut endommager les pièces internes du régulateur.

2. Avec les vannes sur l'équipement en aval fermées, réglez le régulateur pour qu'il se rapproche de la pression de fonctionnement. Il est recommandé de tester les fuites aux points de connexion du régulateur en utilisant une solution de détection de fuites appropriée ou de l'eau savonneuse.

3. Purger l'air ou un autre gaz de protection indésirable de qualité de soudage de l'équipement connecté au régulateur en ouvrant individuellement puis en fermant les vannes de contrôle de l'équipement. La purge complète peut prendre jusqu'à dix secondes ou plus, en fonction de la longueur et de la taille du tuyau en cours de purge.

Ajuster le débit

Avec le régulateur prêt à fonctionner, ajustez le débit de travail comme suit:

1. Tournez lentement la vis / bouton de réglage dans le sens des aiguilles d'une montre jusqu'à ce que la jauge de sortie indique le débit souhaité.

REMARQUE

Il peut être nécessaire de vérifier à nouveau le débit de régulateur du gaz de protection après la première séquence de soudage en raison de la contre-pression présente dans l'assemblage du tuyau de gaz de protection.

1. Pour réduire le débit, permettez au gaz de protection de soudage de se décharger du régulateur en ouvrant la vanne en aval. Purgez le gaz de protection dans un endroit bien ventilé et loin de toute source d'inflammation. Tournez la vis de réglage dans le sens antihoraire jusqu'à ce que le débit requis soit indiqué sur la jauge. Fermez la vanne en aval.

2. Ajustez la vis de réglage de la pression du régulateur au débit souhaité, indiqué sur le cadran de la jauge. Le débit de gaz doit être suffisant pour couvrir la zone de soudure afin d'arrêter la porosité de la soudure. Des débits de gaz excessifs peuvent provoquer une turbulence et une porosité de la soudure.

Fermeture

Fermez la vanne de la bouteille lorsque le régulateur n'est pas utilisé. Pour l'arrêt de longues périodes (plus de 30 minutes):

1. Fermez hermétiquement le cylindre ou la valve en amont.

2. Ouvrez les soupapes d'équipement en aval pour drainer les conduites. Purgez le gaz dans une zone bien ventilée et loin de toute source d'inflammation.

3. Une fois le gaz complètement vidé, désengagez la vis de réglage et fermez les vannes d'équipement.

4. Avant de transporter des bouteilles qui ne sont pas fixées sur un chariot conçu à cet effet, retirez les régulateurs.

2.11 Mise en place de soudage MIG (GMAW) avec fil MIG blindé au gaz

Lorsque vous utilisez un câble non blindé, vous devez disposer d'une source de gaz externe fixée à l'unité. Pour la plupart des fils non blindés, connectez le fil de travail à la borne négative et connectez le fil de polarité du pistolet MIG à la borne positive +. En cas de doute, consultez le fabricant du fil d'électrode MIG.
Opération

1. Tournez l'interrupteur principal ON / OFF sur OFF (situé sur le panneau arrière).
2. Vérifiez que la taille du fil MIG, l'embout de contact, la gaine du pistolet MIG et la rainure du rouleau d'entraînement sont tous de la même taille avant d'installer le fil MIG dans la source d'alimentation.
3. Connectez le fil de polarité du pistolet MIG à la borne de soudage positive (+). En cas de doute, consultez le fabricant du fil d'électrode MIG. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électronique.
4. Fixez la bobine de fil MIG et le pistolet MIG à la machine.
5. Connectez le fil de travail à la borne de soudage négative (-). En cas de doute, consultez le fabricant du fil d'électrode MIG. Le courant de soudage s'écoule de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électronique.
6. Fixez le régulateur de gaz de protection / la jauge de qualité de soudage à la bouteille de gaz de protection, puis raccordez le tuyau de gaz de protection de l'arrière de la machine à la sortie du régulateur / de la jauge de débit.
7. Mettez l'interrupteur principal ON / OFF sur ON (situé sur le panneau arrière).
8. Sélectionnez le mode MIG avec le contrôle de sélection de processus.
9. Retirez la buse du pistolet MIG et la pointe de contact.
10. Appuyez sur la gâchette du pistolet MIG pour faire passer le fil MIG à travers le diffuseur de gaz du pistolet MIG, puis placez la pointe de contact sur le fil MIG et fixez-le solidement au pistolet MIG, puis placez la buse en place.
11. Reportez-vous au Guide de la soudure situé à l'intérieur de la porte du compartiment d'alimentation du fil pour plus d'informations sur les paramètres de tension / vitesse du fil.

ÉQUIPEMENT DE LA SÉRIE MIG

ÉQUIPEMENT DE LA SÉRIE MIG

Opération

1. Tournez l'interrupteur principal ON / OFF sur OFF (situé sur le panneau arrière, located on the rear panel).
2. Vérifiez que la taille du fil MIG, l'embout de contact, la gaine du pistolet MIG et la rainure du rouleau d'entraînement sont tous de la même taille avant d'installer le fil MIG dans la source d'alimentation.
3. Connectez le fil de polarité du pistolet MIG au connecteur de la torche MIG. En cas de doute, consultez le fabricant du fil d'électrode MIG. Le courant de soudage provient de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électronique.
4. Fixez la bobine de fil MIG (FCAW) et le pistolet MIG à la machine.
5. Connectez le fil de travail à la borne de soudage positive (+). En cas de doute, consultez le fabricant du fil d'électrode MIG. Le courant de soudage provient de la source d'alimentation via des bornes de type à baïonnette robuste. Cependant, il est essentiel que la fiche mâle soit insérée et tournée fermement pour obtenir une bonne connexion électronique.
6. Si un fil MIG (FCAW) sans gaz est installé, le gaz de protection n'est pas requis pour le soudage. Si ce n'est pas le cas, installez le régulateur de gaz de protection / la jauge de qualité de soudage sur la bouteille de gaz de protection, puis raccordez le tuyau de gaz de protection de l'arrière de la machine à la sortie du régulateur / débit.
7. Mettez l'interrupteur principal ON / OFF sur ON (situé sur le panneau arrière).
8. Sélectionnez le mode MIG avec le contrôle de sélection de processus.
9. Retirez la buse du pistolet MIG et la pointe de contact.
10. Appuyez sur la gâchette du pistolet MIG pour faire passer le fil MIG à travers le diffuseur de gaz du pistolet MIG, puis placez la pointe de contact sur le fil MIG et fixez-le solidement au pistolet MIG puis placez la buse en place.

AVERTISSEMENT

Avant de brancher la pince de travail au travail, assurez-vous que l'alimentation électrique est coupée.
Fixez la bouteille de gaz de protection de grade de soudage dans une position verticale en l'enchaînant à un soutien suffisant pour empêcher l'amortissement.

MISE EN GARDE

Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entrainer la fusion de la prise mâle dans la borne.
Retirez tout matériau d'emballage avant l'utilisation. NE BLOQUEZ PAS les ouvertures d'aération à l'avant ou à l'arrière de la source d'alimentation de soudage.

REMARQUE

Selon le type de fil que vous utiliserez, la polarité du pistolet MIG devra peut-être être modifiée. Suivez la recommandation du fabricant de fil.

AVERTISSEMENT
Avant de brancher la pince de travail au travail, assurez-vous que l’alimentation électrique est coupée.

MISE EN GARDE
Des connexions lâches de bornes de soudage peuvent provoquer une surchauffe et entraîner la fusion de la prise mâle dans la borne. Retirez tout matériau d’emballage avant l’utilisation. NE BLOQUEZ PAS les ouvertures d’aération à l’avant ou à l’arrière de la source d’alimentation de soudage.

REMARQUE
Selon le type de fil que vous utiliserez, la polarité du pistolet MIG devra peut-être être modifiée. Suivez la recommandation du fabricant de fil.

2.13 Installation pour le soudage LIFT TIG (GTAW) (seulement pour R231)

AVERTISSEMENT
vant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés.

REMARQUE
Les étapes suivantes supposent que vous avez déjà configuré le gaz de protection approprié.

REMARQUE
La configuration suivante est connue sous le nom de Polarité Droite ou électrode CC positive. Ceci est couramment utilisé pour le soudage DC LIFT TIG sur la plupart des matériaux tels que l’acier et l’acier inoxydable.

1. Mettez l'interrupteur ON / OFF (situé sur le panneau arrière) sur OFF.
2. Connectez le câble de la ligne de travail à la borne de sortie positive et le câble de la torche TIG LIFT à la borne de sortie négative.
3. Branchez la conduite de gaz / tuyau à la source de gaz de protection appropriée et branchez la prise d'avion pour l'interrupteur à détente à la prise de contrôle à 5 broches.
5. Connectez la pince de fil de travail à votre pièce de travail.

![Illustration de soudage LIFT TIG](image)

2 à 2,5 fois le diamètre de l’électrode

Électrode

7. Installez le tungstène avec environ 1,6 mm à 3,2 mm dépassant de la coupelle de gaz, en vous assurant que vous avez une bonne taille de serrage.
8. Serrez le capuchon arrière.
10. Réglez le processus de soudage à LIFT TIG.
11. Réglez le bouton de contrôle de courant de soudage à l’intensité désirée.
12. Vous êtes maintenant prêt à commencer l’alimentation électrique de soudage de LIFT TIG.

2.14 Configuration pour le soudage STICK (MMA)

AVERTISSEMENT
vant de commencer à souder, assurez-vous de porter tous les équipements de sécurité appropriés.

REMARQUE
La configuration suivante est connue sous le nom de DC Electrode Positive ou Reverse Polarity. Veuillez consulter le fabricant de l’électrode STICK pour des recommandations de polarité spécifiques.
1. Mettez l'interrupteur ON / OFF (situé sur le panneau arrière) sur OFF

2. Attachez le STICK et actionnez la pince de mise à la terre comme indiqué dans la Figure.

REMARQUE

3. Réglez le processus de soudage sur STICK.

4. Réglez le courant de soudage du contrôle positif et négatif à l’ampérage désiré. Définissez les différentes exigences pour le démarrage à chaud, l’heure de démarrage et la force d’arc aussi.

5. Installez une électrode STICK dans le porte-électrode.

6. Vous êtes maintenant prêt à commencer le soudage STICK.

Pour souder, frapper doucement l’électrode sur la pièce à travailler pour générer un arc de soudage, et se déplacer lentement le long de la pièce à travailler tout en maintenant une longueur d’arc constante au-dessus du métal de base.

3.1 Dépannage

Il y a des niveaux de tension et de puissance extrêmement dangereux à l’intérieur de ce produit. N’essayez pas d’ouvrir ou de réparer, sauf si vous êtes un électricien qualifié et que vous avez suivi une formation approfondie sur les mesures de puissance et les techniques de dépannage.

AVERTISSEMENT

Si des sous-ensembles complexes importants sont défectueux, la source d’alimentation de soudage doit être retournée à un revendeur accrédité pour réparation. Le niveau de base du dépannage est celui qui peut être effectué sans équipement spécial ou de connaissances. Reportez-vous également à la section 6.01-6.02 pour résoudre les problèmes de soudage.

Nombre

<table>
<thead>
<tr>
<th>Troubles</th>
<th>Raisons</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation est allumé, le ventilateur ne fonctionne pas.</td>
<td>Le ventilateur est cassé</td>
</tr>
<tr>
<td>2</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation est allumé, le ventilateur fonctionne, l’indicateur d’alimentation n’est pas allumé</td>
<td>Il y a quelque chose dans le ventilateur</td>
</tr>
<tr>
<td>3</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation est allumé, le ventilateur ne fonctionne pas, le voyant d'alimentation n'est pas allumé</td>
<td>Le condensateur de démarrage du ventilateur endommagé</td>
</tr>
<tr>
<td>4</td>
<td>Allumez la source d'alimentation, le ventilateur fonctionne, l’indicateur d’alimentation n’est pas allumé</td>
<td>Le voyant d'alimentation est endommagé ou la connexion n’est pas bonne</td>
</tr>
<tr>
<td>5</td>
<td>Allumez la source d'alimentation, le voyant d'alimentation n’est pas allumé</td>
<td>Le panneau d‘alimentation est cassé</td>
</tr>
<tr>
<td>6</td>
<td>Allumez la source d'alimentation, le condensateur de démarrage du ventilateur endommagé</td>
<td>Le panneau d‘alimentation est cassé</td>
</tr>
<tr>
<td>7</td>
<td>La lumière de l’indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
<td>Le panneau d‘alimentation est cassé</td>
</tr>
<tr>
<td>8</td>
<td>Le tableau de commande est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td>9</td>
<td>Pas de sortie de tension à vide (MMA)</td>
<td>Si l’indicateur de surchauffe est allumé</td>
</tr>
<tr>
<td>10</td>
<td>Le circuit principal est cassé</td>
<td>Le câble d‘alimentation est cassé</td>
</tr>
<tr>
<td>11</td>
<td>La machine est cassée</td>
<td>L‘interrupteur de mise sous tension est endommagé</td>
</tr>
<tr>
<td>12</td>
<td>Le panneau d‘affichage est endommagé</td>
<td>La lumière de l‘indicateur de puissance est cassée et les problèmes mentionnés dans Nr. 2</td>
</tr>
<tr>
<td>13</td>
<td>Le tube numérique est cassé</td>
<td>Le changement</td>
</tr>
<tr>
<td>14</td>
<td>Le tableau de commande est cassé</td>
<td>Le rouleau de fil est mal installé</td>
</tr>
<tr>
<td>15</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le rouleau de fil est jumelé</td>
</tr>
<tr>
<td>16</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le bras du rouleau de pression est monté incorrectement</td>
</tr>
<tr>
<td>17</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le fil ne passe pas correctement à travers le guide du fil d’entrée</td>
</tr>
<tr>
<td>18</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>La taille de la rainure, du fil et de la pointe de la torche ne sont pas de la même taille</td>
</tr>
<tr>
<td>19</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le tableau de commande est cassé</td>
</tr>
<tr>
<td>20</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le tableau de commande est cassé</td>
</tr>
<tr>
<td>21</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le tableau de commande est cassé</td>
</tr>
<tr>
<td>22</td>
<td>Le courant de soudage affiché n’est pas conforme à la valeur réelle</td>
<td>Le tableau de commande est cassé</td>
</tr>
<tr>
<td>Nr.</td>
<td>Troubles</td>
<td>Raisons</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td>Allumez la source d'alimentation, l'indicateur d'alimentation est allumé, les flux de gaz, l'alimentation du fil, aucun arc d'allumage</td>
<td>Vérifiez si le circuit de soudage est correct</td>
</tr>
<tr>
<td></td>
<td>La torche mig n'est pas correctement installée sur la machine</td>
<td>Vérifiez et connectez correctement</td>
</tr>
<tr>
<td></td>
<td>Le tableau de commande est cassé</td>
<td>Consultez le revendeur ou le fabricant</td>
</tr>
<tr>
<td>10</td>
<td>Pas de flux de gaz (TIG/MIG)</td>
<td>Le cylinder de gaz est proche ou la pression du gaz est basse</td>
</tr>
<tr>
<td></td>
<td>Quelque chose est dans la valve</td>
<td>Le retirer</td>
</tr>
<tr>
<td></td>
<td>La souppa électromagnétique est endommagée</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Le tube d'air est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td></td>
<td>Pression trop élevée ou le régulateur d'air est cassé</td>
<td>Vérifier le gaz</td>
</tr>
<tr>
<td>11</td>
<td>Le gaz circule toujours</td>
<td>Quelque chose est dans la valve</td>
</tr>
<tr>
<td></td>
<td>Le tableau de commande est cassé</td>
<td>Le changer</td>
</tr>
<tr>
<td>12</td>
<td>Sans déclencher la torche mig mais le fil d'alimentation role automatiquement</td>
<td>Vérifiez si l'indicateur de vérification du fil est allumé</td>
</tr>
<tr>
<td></td>
<td>Le panneau d'alimentation en fil (pour R251 et R311) est cassé ou le panneau de contrôle (pour R221 et R231) est cassé</td>
<td>Consultez le revendeur ou le fabricant</td>
</tr>
<tr>
<td>13</td>
<td>Le courant de soudage ne peut pas être ajusté</td>
<td>Vérifier si l'électrode colle à la pièce que la fonction anti-adhérence est activée</td>
</tr>
<tr>
<td></td>
<td>Le tableau de commande est cassé</td>
<td>Le réparer ou changer</td>
</tr>
<tr>
<td></td>
<td>Couper l'alimentation en changeant la torche</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Le voyant de surcharge thermique est allumé</td>
<td>Protection contre la surchauffe, trop de courant de soudage</td>
</tr>
<tr>
<td></td>
<td>Protection contre la surchauffe, ravail trop de temps</td>
<td>Réduire le temps de soudage</td>
</tr>
<tr>
<td></td>
<td>Protection contre les surintensités, le courant dans le circuit principal est hors de contrôle</td>
<td>Vérifier et réparer le circuit principal et la carte d'entraînement</td>
</tr>
<tr>
<td></td>
<td>La tension d'entrée est trop faible</td>
<td>Vérifier l'alimentation</td>
</tr>
<tr>
<td></td>
<td>Le ventilateur est cassé</td>
<td>Changer le ventilateur</td>
</tr>
<tr>
<td>15</td>
<td>La pénétration de la piscine fondue ne suffit pas</td>
<td>Le courant de soudage est réglé trop bas</td>
</tr>
<tr>
<td></td>
<td>L'arc est trop long dans le processus de soudage</td>
<td>Ajuster la distance de la torche à la pièce</td>
</tr>
<tr>
<td></td>
<td>Le câble d'alimentation ou le câble de soudage est trop long</td>
<td>Utiliser la longueur appropriée du fabricant</td>
</tr>
<tr>
<td>16</td>
<td>L'électrode Tig fond lors du soudage(R231)</td>
<td>La torche Tig est connectée à la borne positive</td>
</tr>
<tr>
<td></td>
<td>Flutters d'arc pendant le soudage Tig</td>
<td>L'électrode de tungstène est trop grande pour le courant de soudage</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Vérifier la position de la pince de terre sur la pièce à travail</td>
</tr>
</tbody>
</table>
Soudage TIG

1.1 Technique de soudage de base TIG

Le soudage à l’arc au tungstène gazeux (GTAW) ou TIG (gaz inerte au tungstène) comme il est communément appelé, est un procédé de soudage dans lequel la fusion est produite par un arc électrique qui est établi entre une seule électrode de tungstène (non-consommable) et la pièce à travailler. Le blindage est obtenu à partir d’un gaz de protection de soudage ou d’un mélange de gaz de protection de type soudage qui est généralement à base d’argon. Un métal d’apport peut également être ajouté manuellement dans certaines circonstances en fonction de l’application de soudage.

1.2 Formes communes dans TIG

1.3 L’explication de la qualité du soudage

La relation entre la couleur de la zone de soudure & la protection de l’effet de l’acier inoxydable

<table>
<thead>
<tr>
<th>Couleur de la zone de soudure</th>
<th>Argent, Dore</th>
<th>bleu</th>
<th>rouge-gris</th>
<th>gris</th>
<th>noir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effet de protection</td>
<td>Le mieux</td>
<td>Mieux</td>
<td>bon</td>
<td>mal</td>
<td>pire</td>
</tr>
</tbody>
</table>

La relation entre la couleur de zone de soudage et l’effet de protection de l’alliage de Ti.

<table>
<thead>
<tr>
<th>Couleur de la zone de soudage</th>
<th>Argent brillant</th>
<th>Orange jaune</th>
<th>Bleu violet</th>
<th>Caesious</th>
<th>Poudre blanche d’oxyde de titane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effet de protection</td>
<td>Le meilleur</td>
<td>Meilleur</td>
<td>Bon</td>
<td>Mal</td>
<td>Le pire</td>
</tr>
</tbody>
</table>

1.4 Paramètres TIG correspondants

La relation correspondante entre le diamètre de la buse de gaz et le diamètre de l’électrode

<table>
<thead>
<tr>
<th>Diamètre de buse de gaz</th>
<th>Diamètre de l’électrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4mm</td>
<td>0.5mm</td>
</tr>
<tr>
<td>8mm</td>
<td>1.0mm</td>
</tr>
<tr>
<td>9.5mm</td>
<td>1.6 or 2.4mm</td>
</tr>
<tr>
<td>11.1mm</td>
<td>3.2mm</td>
</tr>
</tbody>
</table>

Buse de gaz et débit de gaz de protection

<table>
<thead>
<tr>
<th>Gamme de courant de soudage</th>
<th>Connexion positive CC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diamètre de buse de gaz</td>
<td>Débit de gaz</td>
</tr>
<tr>
<td>10~100A</td>
<td>4~9.5mm</td>
<td>4~5min</td>
</tr>
<tr>
<td>101~150A</td>
<td>4~9.5mm</td>
<td>4~7min</td>
</tr>
<tr>
<td>151~200A</td>
<td>6~13mm</td>
<td>6~8min</td>
</tr>
<tr>
<td>201~300A</td>
<td>8~13mm</td>
<td>8~9min</td>
</tr>
</tbody>
</table>

Électrode de tungstène

<table>
<thead>
<tr>
<th>Diamètre de l’électrode de tungstène</th>
<th>Affûté du diamètre de l’électrode</th>
<th>Angle de Cone</th>
<th>Contexte actuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm</td>
<td>0.125mm</td>
<td>12°</td>
<td>2~15A</td>
</tr>
<tr>
<td>1.0mm</td>
<td>0.25mm</td>
<td>20°</td>
<td>5~30A</td>
</tr>
<tr>
<td>1.6mm</td>
<td>0.5mm</td>
<td>25°</td>
<td>8~50A</td>
</tr>
<tr>
<td>1.6mm</td>
<td>0.8mm</td>
<td>30°</td>
<td>10~70A</td>
</tr>
<tr>
<td>2.4mm</td>
<td>0.8mm</td>
<td>35°</td>
<td>12~90A</td>
</tr>
<tr>
<td>2.4mm</td>
<td>1.1mm</td>
<td>45°</td>
<td>15~150A</td>
</tr>
<tr>
<td>3.2mm</td>
<td>1.1mm</td>
<td>60°</td>
<td>20~200A</td>
</tr>
<tr>
<td>4.0mm</td>
<td>1.5mm</td>
<td>90°</td>
<td>20~300A</td>
</tr>
</tbody>
</table>
Soudage TIG

###Paramètres du soudage par soudage à contre-courant de l’acier doux (DCEP)

<table>
<thead>
<tr>
<th>Épaisseur de la pièce</th>
<th>Diamètre de l’électrode en tungstène</th>
<th>Diamètre de fil de soudure (DCEP)</th>
<th>Courant de soudage (DCEP)</th>
<th>Débit de gaz d’argon</th>
<th>Vitesse de soudage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8mm</td>
<td>1.0mm</td>
<td>1.6mm</td>
<td>20-50A</td>
<td>66cm/min</td>
<td></td>
</tr>
<tr>
<td>1.0mm</td>
<td>1.6mm</td>
<td>1.6mm</td>
<td>50-80A</td>
<td>56cm/min</td>
<td></td>
</tr>
<tr>
<td>1.5mm</td>
<td>1.6mm</td>
<td>1.6mm</td>
<td>65-105A</td>
<td>30cm/min</td>
<td></td>
</tr>
<tr>
<td>2.4mm</td>
<td>1.6mm</td>
<td>1.6mm</td>
<td>75-125A</td>
<td>25cm/min</td>
<td></td>
</tr>
<tr>
<td>2.4mm</td>
<td>1.6mm</td>
<td>2.4mm</td>
<td>85-125A</td>
<td>30cm/min</td>
<td></td>
</tr>
<tr>
<td>3.2mm</td>
<td>1.6mm</td>
<td>2.4mm</td>
<td>95-135A</td>
<td>25cm/min</td>
<td></td>
</tr>
<tr>
<td>3.2mm</td>
<td>1.6mm</td>
<td>2.4mm</td>
<td>100-135A</td>
<td>30cm/min</td>
<td></td>
</tr>
<tr>
<td>4.8mm</td>
<td>1.6mm</td>
<td>2.4mm</td>
<td>115-145A</td>
<td>25cm/min</td>
<td></td>
</tr>
<tr>
<td>4.8mm</td>
<td>3.2mm</td>
<td>3.2mm</td>
<td>150-225A</td>
<td>25cm/min</td>
<td></td>
</tr>
<tr>
<td>6.0mm</td>
<td>3.2mm</td>
<td>3.2mm</td>
<td>175-250A</td>
<td>20cm/min</td>
<td></td>
</tr>
<tr>
<td>6.0mm</td>
<td>1.6mm</td>
<td>4.0mm</td>
<td>220-300A</td>
<td>25cm/min</td>
<td></td>
</tr>
</tbody>
</table>

Remarque : les paramètres ci-dessus proviennent de "Welding Dictionary" P142, Volume 1 de l’édition 2

###Paramètres TIG de l’équipement de Séries E

1.5 Paramètres TIG de l’équipement de Séries E

<table>
<thead>
<tr>
<th>Épaisseur de l’acier</th>
<th>Diamètre du fil de soudage</th>
<th>Diamètre de l’électrode en tungstène</th>
<th>Courant de soudage</th>
<th>Débit de gaz</th>
<th>Diamètre de buse de gaz</th>
<th>Remarque</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mm</td>
<td>1.6mm</td>
<td>2mm</td>
<td>45-60A</td>
<td>7-9min</td>
<td>8mm</td>
<td>Bride de soudage</td>
</tr>
<tr>
<td>1.5mm</td>
<td>1.6-2.0mm</td>
<td>2mm</td>
<td>50-80A</td>
<td>7-9min</td>
<td>8mm</td>
<td>Bride ou soudage bout à bout d’un côté</td>
</tr>
<tr>
<td>2mm</td>
<td>2-2.5mm</td>
<td>2-3mm</td>
<td>90-120A</td>
<td>8-12min</td>
<td>8-12mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>3mm</td>
<td>2-3mm</td>
<td>3mm</td>
<td>150-180A</td>
<td>8-12min</td>
<td>10-15min</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>4mm</td>
<td>3mm</td>
<td>4mm</td>
<td>180-200A</td>
<td>10-15min</td>
<td>8-12mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>5mm</td>
<td>3-4mm</td>
<td>4mm</td>
<td>180-240A</td>
<td>10-15min</td>
<td>10-12mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>6mm</td>
<td>4mm</td>
<td>5mm</td>
<td>240-280A</td>
<td>16-20min</td>
<td>14-16mm</td>
<td>Soudage bout à bout X-Groove</td>
</tr>
<tr>
<td>8mm</td>
<td>4-5mm</td>
<td>5mm</td>
<td>260-320A</td>
<td>16-20min</td>
<td>14-16mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>10mm</td>
<td>4-5mm</td>
<td>5mm</td>
<td>280-340A</td>
<td>16-20min</td>
<td>14-16mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>12mm</td>
<td>4-5mm</td>
<td>5-6mm</td>
<td>300-360A</td>
<td>16-22min</td>
<td>16-20mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>14mm</td>
<td>5-6mm</td>
<td>5-6mm</td>
<td>340-380A</td>
<td>20-24min</td>
<td>16-20mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>16mm</td>
<td>5-6mm</td>
<td>6mm</td>
<td>340-380A</td>
<td>20-24min</td>
<td>16-20mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>18mm</td>
<td>5-6mm</td>
<td>6mm</td>
<td>360-400A</td>
<td>25-30min</td>
<td>16-20mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>20mm</td>
<td>5-6mm</td>
<td>6mm</td>
<td>360-400A</td>
<td>25-30min</td>
<td>20-22mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>20mm</td>
<td>6mm</td>
<td>6mm</td>
<td>300-380A</td>
<td>25-30min</td>
<td>16-20mm</td>
<td>Soudage bout à bout</td>
</tr>
<tr>
<td>22-25mm</td>
<td>5-6mm</td>
<td>6-7mm</td>
<td>200-260°C</td>
<td>30-35min</td>
<td>20-22mm</td>
<td>Soudage bout à bout</td>
</tr>
</tbody>
</table>

Soudage TIG

###Plages actuelles de courant d’électrode de tungstène

<table>
<thead>
<tr>
<th>Diamètre du fil de remplissage</th>
<th>Plage de courant DC (ampères)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm (0.040")</td>
<td>30-60</td>
</tr>
<tr>
<td>1.6mm (1/16")</td>
<td>60-115</td>
</tr>
<tr>
<td>2.4mm (3/32")</td>
<td>100-165</td>
</tr>
<tr>
<td>3.2mm (1/8")</td>
<td>135-200</td>
</tr>
<tr>
<td>4.0mm (5/32")</td>
<td>190-280</td>
</tr>
<tr>
<td>5mm (3/16")</td>
<td>250-340</td>
</tr>
</tbody>
</table>

Guides de sélection du diamètre du fil de remplissage
Types d’électrode de tungstène

<table>
<thead>
<tr>
<th>Type d’électrode (Shell)</th>
<th>Soudage Application</th>
<th>Caractéristiques</th>
<th>Code couleur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoriated 2%</td>
<td>Soudage DC d’acier doux, d’acier inoxydable et de cuivre</td>
<td>Excellent amorçage d’arc, longue durée de vie, capacité de transport de courant élevée</td>
<td>rouge</td>
</tr>
<tr>
<td>Zirconated 1%</td>
<td>Soudage AC de haute qualité en aluminium, magnésium et leurs alliages.</td>
<td>Auto-nettoyage, Longue vie, Maintient l’extremité boule, capacité de transport de courant élevée.</td>
<td>blanc</td>
</tr>
<tr>
<td>Ceriated 2%</td>
<td>Soudage AC et DC de l’acier doux, de l’acier inoxydable, du cuivre, de l’aluminium, du magnésium et de leurs alliages.</td>
<td>Durée de vie plus longue, arc plus stable, démarrage plus facile, plage de courant plus large, arc plus étroit et plus concentré.</td>
<td>Gris</td>
</tr>
</tbody>
</table>

Tiges de remplissage de soudage TIG

<table>
<thead>
<tr>
<th>Épaisseur de métal de base</th>
<th>Courant CC pour l’acier doux</th>
<th>Courant CC pour l’acier inoxydable</th>
<th>Tungstène Électrode</th>
<th>Diamètre de la tige de remplissage (si nécessaire)</th>
<th>Débit de gaz d’argon LPM (CFH)</th>
<th>Type de joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0mm 0.040”</td>
<td>35-45</td>
<td>20-30-25</td>
<td>1.0mm 0.040”</td>
<td>1.8mm 1/16”</td>
<td>5-7(10-15)</td>
<td>Butt / Coin</td>
</tr>
<tr>
<td>1.2mm 0.045”</td>
<td>45-55</td>
<td>30-45-35</td>
<td>1.0mm 0.040”</td>
<td>1.6mm 1/16”</td>
<td>5-7(10-15)</td>
<td>Butt / Lap</td>
</tr>
<tr>
<td>1.6mm 1/16”</td>
<td>60-70</td>
<td>40-60-50</td>
<td>1.6mm 1/16”</td>
<td>1.6mm 1/16”</td>
<td>7(15)</td>
<td>Lap / filet</td>
</tr>
<tr>
<td>3.2mm 1/8”</td>
<td>80-100</td>
<td>65-85-90</td>
<td>1.6mm 1/16”</td>
<td>2.4mm 3/32”</td>
<td>7(15)</td>
<td>Lap / filet</td>
</tr>
<tr>
<td>4.8mm 3/16”</td>
<td>115-135</td>
<td>100-125</td>
<td>2.4mm 3/32”</td>
<td>3.2mm 1/8”</td>
<td>9(20)</td>
<td>Lap / filet</td>
</tr>
<tr>
<td>6.4mm 1/4”</td>
<td>160-175</td>
<td>135-160</td>
<td>3.2mm 1/8”</td>
<td>4.0mm 5/32”</td>
<td>9(20)</td>
<td>Lap / filet</td>
</tr>
</tbody>
</table>

Le soudage TIG est généralement considéré comme un processus spécialisé qui nécessite la compétence de l’opérateur. Bien que de nombreux principes énoncés dans la section précédente sur le soudage à l’arc soient applicables, un aperçu complet du processus de soudage TIG est hors de la portée de ce manuel d’utilisation.

2.1 Technique de base de soudage MMA

Pratique du soudage à l’arc
Les techniques utilisées pour le soudage à l’arc sont presque identiques, quels que soient les types de métaux joints. Naturellement, différents types d’électrodes seraient utilisés pour différents métaux, comme décrit dans la section précédente.

Position de soudage
Les électrodes traitées dans cette publication peuvent être utilisées dans la plupart des positions, par exemple, ils conviennent à la soudure dans des positions plates, horizontales, verticales et aériennes. De nombreuses applications nécessitent des soudures dans des positions intermédiaires entre celles-ci. Certains des types communs de soudures sont affichés.

Préparations conjointes
Dans de nombreux cas, il sera possible de souder des sections d’acier sans préparation spéciale. Pour les sections plus lourdes et pour les travaux de réparation sur les pièces coulées, etc.; il sera nécessaire de couper ou de moudre un angle entre les pièces à assembler pour assurer une pénétration correcte du métal de soudure et produire des joints solides. En général, les surfaces à soudier doivent être propres et exemptes de rouille, de calamine, de saleté, de graisse, etc. Les scories doivent être enlevées des surfaces oxy-découpées.

Technique de soudage à l’arc - Un mot pour les débutants
Pour ceux qui n’ont pas encore fait de soudure, le moyen le plus simple de commencer est de faire passer des perles sur un morceau de ferraille. Utilisez une plaque d’acier doux d’environ 6,4 mm (1/4 “) d’épaisseur et une électrode de 3,2 mm (1/8”). Nettoyez toute la peinture, le tartre ou la graisse hors de la plaque et placez-le fermement sur le banc de travail de sorte que le soudage peut être effectué en position de descente. Assurez-vous que la pince de travail est bien en contact électrique avec le travail, directement ou par l’intermédiaire de la table de travail. Pour les matériaux de faible épaisseur, serrez toujours le fil de travail directement sur le travail, sinon il en résultera probablement un mauvais circuit.

Le soudage TIG est généralement considéré comme un processus spécialisé qui nécessite la compétence de l’opérateur. Bien que de nombreux principes énoncés dans la section précédente sur le soudage à l’arc soient applicables, un aperçu complet du processus de soudage TIG est hors de la portée de ce manuel d’utilisation.
Le soudeur

Placez le travail de sorte que la direction de soudage est à travers, plutôt que en face de ou vers votre corps. Le fil du porte-électrode doit être dégagé de toute obstruction afin que vous puissiez bouger librement votre bras lorsque l’électrode brûle. Si le plomb est en bandoulière, il permet une plus grande liberté de mouvement et prend beaucoup de poids de votre main. Assurez-vous que l’isolation de votre câble et de votre porte-électrode n’est pas défectueuse, sinon vous risquez d’un choc électrique.

3.1 Technique de soudage de base pour MIG (GMAW / FCAW)

Deux procédés de soudage différents sont couverts dans cette section (GMAW et FCAW), avec l’intention de fournir les concepts de base en utilisant le mode de soudage MIG, où un pistolet MIG est tenu à la main, et l’électrode (fil de soudage) est alimenté dans une filière de soudage, et l’arc est protégé par un gaz de protection inerte de qualité de soudage ou un mélange de gaz inerte de protection de qualité

SOUDAGE À L’ARC MÉTAL DU GAZ (GMAW): Ce procédé, également connu sous le nom de soudage MIG, soudage au CO2, soudage au fil micro, soudage à l’arc court, soudage par transfert, soudage par fil, etc., est un procédé de soudage à l’arc électrique qui fusionne les pièces à souder par les chauffer avec un arc entre une électrode solide continue et consommable et le travail.

Le blindage est obtenu à partir d’un gaz de protection de qualité de soudage fourni de l’extérieur ou d’un mélange de gaz de protection de qualité de soudage. Le processus est normalement appliqué semi automatiquement; Cependant, le processus peut être actionné automatiquement et peut être actionné par la machine. Le procédé peut être utilisé pour souder des aciers fins et relativement épais, et certains métaux non ferreux dans toutes les positions.

FLUX CORED ARC WELDING (FCAW): This is an electric arc welding process which fuses together the parts to be welded by heating them with an arc between a continuus flux filled electrode wire and the work. Shielding is obtained through decomposition of the flux within the tubular wire. Additional shielding may or may not be obtained from an externally supplied gas or gas mixture. The process is normally applied semi automatically; however the process may be applied automatically or by machine. It is commonly used to weld large diameter electrodes in the flat and horizontal position and small electrode diameters in all positions. The process is used to a lesser degree for welding stainless steel and for overlay work.
Position du pistolet MIG
L’angle du pistolet MIG à la soudure a un effet sur la largeur de la soudure.

Le pistolet MIG doit être maintenu en biais par rapport au joint de soudure. (Voir Variables d’ajustement secondaires ci-dessus)
Tenez le pistolet MIG de sorte que la soudure soit toujours visible. Toujours portez le casque de soudage avec des lentilles de filtre appropriées et utilisez l’équipement de sécurité approprié.

AVERTISSEMENT
Ne PAS retirer le pistolet MIG lorsque l’arc est établi. Cela créera une extension excessive du fil (dépassement) et fera une très mauvaise soudure.
Le fil d’électrode n’est pas activé jusqu’à ce que l’interrupteur de déclenchement du pistolet MIG soit enfoncé. Le fil peut donc être placé sur la couture ou le joint avant d’abaisser le casque.

Distance de la buse de pistolet MIG à la pièce de travail
Le fil de l’électrode sortant de la buse du pistolet MIG doit être entre 10 - 20 mm (3/8" - 3/4"). Cette distance peut varier en fonction du type de joint à souder.

Vitesse de voyage
La vitesse de déplacement du bain de fusion influe sur la largeur de la soudure et la pénétration de la soudure.

Établir l’arc et faire des perles de soudure
Avant d’essayer de souder une pièce finie, il est recommandé de faire des soudures pratiques sur un échantillon de métal du même matériau que celui de la pièce finie.
La procédure de soudage la plus facile pour le débutant est d’utiliser un pistolet MIG. L’équipement est capable de positions plates, verticales et aériennes.
Pour pratiquer le soudage MIG, fixez des pièces de tôles de tôle d’acier doux de 1,6 mm ou 5,0 mm (1/16 po ou 3/16 po) de 150 mm x 150 mm (6 po x 6 po). Utilisez un fil sans gaz à fond perdu de 0,9 mm (0,035") ou un fil plein avec un gaz de protection.

Réglage de la source d’alimentation
Le réglage de la source d'alimentation et du fil d'alimentation nécessite une certaine pratique de la part de l'opérateur, car l'installation de soudage possède deux réglages de contrôle qui doivent être équilibrés. Il s’agit de la commande de vitesse de soudage (voir la section 3.06.4) et du contrôle de tension de soudage (voir la section 3.06.10). Le courant de soudage est déterminé par le contrôle de la vitesse de fil, le courant augmente avec l’augmentation de la vitesse du fil, ce qui entraîne un arc plus court. Moins de vitesse de fil sera réduire le courant et allonger l’arc. L’augmentation de la tension de soudage modifie à peine le niveau de courant, mais allonge l’arc. En diminuant la tension, un arc plus court est obtenu avec un petit changement du niveau de courant. Lors du passage à un diamètre de fil d’électrode différent, différents réglages de contrôle sont requis. Un fil d’électrode plus mince nécessite plus de vitesse de fil pour atteindre le même niveau de courant.
Une soudure satisfaisante ne peut pas être obtenue si les réglages de la vitesse de fil et de la tension ne sont pas ajustés en fonction du diamètre du fil d’électrode et des dimensions de la pièce.
Si la vitesse du fil est trop élevée pour la tension de soudage, il se produira un "écrasement" lorsque le fil plonge dans le bain de fusion et ne fond pas. Le soudage dans ces conditions produit normalement une mauvaise soudure en raison du manque de fusion. Si, toutefois, la tension de soudage est trop élevée, de grosses gouttes se forment à l’extrémité du fil, provoquant des éclaboussures. Le réglage correct de la tension et de la vitesse de fil peut être vu sous la forme du dépôt de soudure et entendu par un son régulier d’arc régulier.
Reportez-vous au Guide de la soudure situé à l’intérieur de la porte du compartiment du fil pour les informations de configuration.

Sélection de la taille du fil d’électrode
Le choix de la taille du fil d’électrode et du gaz de protection utilisé dépend de: Épaisseur du métal à souder.
Type de joint
Capacité de l’unité d’alimentation en fil et de la source d’alimentation
La quantité de pénétration requise
Le taux de dépôt requis
Le profil de cordon souhaité
La position de soudage
Coût du fil.
4.1 Entretien

Afin de garantir que la machine de soudage à l’arc fonctionne efficacement et en toute sécurité, elle doit être entretenue régulièrement. Permettez aux clients de mieux comprendre les méthodes de maintenance et les moyens de soudage à l’arc, permettez aux clients de procéder à un simple examen et à la sauvegarde par soi-même, faîtes de son mieux pour réduire le taux de pannes et les temps de réparation de la machine de soudage à l’arc, afin de prolonger la durée de vie de la machine de soudage à l’arc. Les éléments de maintenance sont détaillés dans le tableau suivant

◆ Attention: Pour des raisons de sécurité lors de l’entretien de la machine, coupez l’alimentation électrique et attendez 5 minutes, jusqu’à ce que la tension de la capacité tombe déjà à la tension de sécurité 36V!

Date Article de maintenance

<table>
<thead>
<tr>
<th>Date</th>
<th>Article de maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen quotidien</td>
<td>Observez si le bouton du panneau et l’interrupteur à l’avant et à l’arrière de la machine de soudage à l’arc sont flexibles et correctement mis en place. Si le bouton n’a pas été correctement mis en place, veuillez le corrigir, si vous ne pouvez pas corrigir ou réparer le bouton, veuillez le remplacer immédiatement. Si l’interrupteur n’est pas flexible ou ne peut pas être mis en place correctement, veuillez le remplacer immédiatement; s’il vous plaît entrer en contact avec le département de service de maintenance s’il n’y a pas d’accessoires. Après la mise sous tension, regardez / écoutez si la machine à souder à l’arc a des vibrations, siffle un appel ou une odeur particulière. S’il y a l’un des problèmes ci-dessus, trouvez la raison pour laquelle vous devez vous en débarrasser, si vous ne pouvez pas trouver la raison, s’il vous plaît contacter l’agent local de cette région ou la filiale. Observez si la valeur d’affichage de la LED est intacte. Si le numéro d’affichage n’est pas intact, veuillez remplacer la LED endommagée. Si cela ne fonctionne toujours pas, veuillez maintenir ou remplacer la carte d’affichage. Observez si la valeur min / max de la LED est conforme à la valeur de consigne. S’il y a une différence et qu’elle a affecté le métier de soudage normal, veuillez l'ajuster. Vérifiez si le ventilateur est endommagé et s’il est normal de le faire pivoter ou de le contrôler. Si le ventilateur est endommagé, veuillez le changer immédiatement. Si le ventilateur ne tourne pas après la surchauffe de la soudeuse à l’arc, observez s’il y a quelque chose qui bloque la lame, si elle est bloquée, veuillez vous en débarrasser; Si le ventilateur ne tourne pas après avoir éliminé les problèmes ci-dessus, vous pouvez pousser la lame dans le sens de rotation du ventilateur. Si le ventilateur tourne normalement, la capacité de démarrage doit être remplacée; Sinon, changez le ventilateur. Observez si le connecteur rapide est desserré ou surchauffé. Si la machine de soudage à l’arc présente les problèmes ci-dessus, elle doit être fixée ou changée. Observez si le câble de sortie actuel est endommagé. S’il est endommagé, il doit être enveloppé, isolé ou changé. Utilisation de l’air comprimé sec pour nettoyer l’intérieur de la machine de soudage à l’arc. Surtout pour éliminer les poussières sur le radiateur, le transformateur de tension principale, l’inductance, le module IGBT, la diode de récupération rapide et PCB, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Article de maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examen mensuel</td>
<td>Vérifiez le boulon dans la machine de soudage à l’arc, si elle est lâche, s’il vous plaît le visser. S’il est dérapé, s’il vous plaît le remplacer. Si il est rouillé, s’il vous plaît effacer la rouille sur le boulon pour s’assurer qu’il fonctionne bien.</td>
</tr>
<tr>
<td>Examen trimestriel</td>
<td>Vérifiez si le courant actuel s’accorde avec la valeur d’affichage. S’ils ne concordent pas, ils devraient être réglés. La valeur courante actuelle peut être mesurée par l’ampèremètre ajusté de type pince.</td>
</tr>
<tr>
<td>Examen annuel</td>
<td>Mesurez l’impédance isolante entre le circuit principal, la carte de circuit imprimé et le boîtier, si elle est inférieure à 1 MΩ, l’isolant est supposé d’être endommagé et doit le changer, ainsi que doit changer ou renforcer l’isolation.</td>
</tr>
</tbody>
</table>

TECHNIQUE DE SODAGE ET MAINTENANCE

Entretien

TECHNIQUE DE SODAGE ET MAINTENANCE

Entretien